Cite this article as:

Ce Liang, Guangxin Song, Liguang Liang, Wanlin Wang, Hang He, and Jie Zeng, Microstructure–property relationship of a high strength–toughness Cr–Mo–V steel, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2974-9
Ce Liang, Guangxin Song, Liguang Liang, Wanlin Wang, Hang He, and Jie Zeng, Microstructure–property relationship of a high strength–toughness Cr–Mo–V steel, Int. J. Miner. Metall. Mater.,(2025). https://dx.doi.org/10.1007/s12613-024-2974-9
引用本文 PDF XML SpringerLink

高强韧Cr–Mo–V钢组织–性能关系调控

摘要: 随着全球石油资源的日益紧张,世界石油市场呈现出供不应求的局面,超深井油田的开发逐渐成为石油工业的重要发展方向,为应对更为复杂的服役环境,高强韧油套管钢的开发迫在眉睫。本研究设计了一种Cr–Mo–V微合金化油套管钢,并对其进行了系统的热处理工艺优化。将钢种分别在800、900和1000°C下进行淬火处理,随后在600、680和760°C下进行回火处理,以深入探究微观组织与力学性能之间的内在关系。研究结果表明,当样品在800°C下淬火并进行回火时,其微观组织中包含有未转变的铁素体和大尺寸未溶解碳化物,这显著降低了材料的抗拉强度和冲击韧性。而在其他淬火和回火条件下,碳化物析出和晶界成为平衡抗拉强度(1226–971 MPa)和冲击韧性(65–236 J)的关键因素。从碳化物的角度分析,通过600°C的低回火温度获得的小尺寸碳化物能够实现最佳的析出强化效果,从而显著提升材料的抗拉强度,当碳化物尺寸增大时,基体发生显著软化,材料韧性显著提高,但同时抗拉强度下降。此外,研究还发现,随着淬火温度的升高,奥氏体晶粒尺寸增大,相应的亚晶界尺寸也随之扩大。这种变化会大幅削弱晶界强化和位错强化的效果,同时减少裂纹扩展过程中吸收的能量,对材料的强度和韧性产生不利影响。综上所述,本研究通过系统的热处理工艺优化和微观组织调控,深入揭示了Cr–Mo–V微合金化油套管钢的微观结构与力学性能之间的内在关系,并为开发高性能油套管钢提供了重要的理论依据和实践指导。

 

Microstructure–property relationship of a high strength–toughness Cr–Mo–V steel

Abstract: The demand for oil casing steel with ultra-high strength and excellent impact toughness for safe application in ultra-deep wells is pressing. In improving the combination of strength, ductility, and impact toughness, the designed Cr–Mo–V micro-alloyed oil casing steel was quenched at 800, 900, and 1000°C, followed by tempering at 600, 680, and 760°C, respectively, to obtain distinct microstructures. The results showed that the microstructure of the samples quenched at 800°C followed by tempering comprised untransformed ferrite and large undissolved carbides, which considerably deteriorated tensile strength and impact toughness. For other conditions, the nucleated carbides and the boundaries are key factors that balance the tensile strength from 1226 to 971 MPa and the impact toughness from 65 to 236 J. From the perspective of carbide, optimal precipitation strengthening is achieved with a smaller carbide size obtained by a low tempering temperature of 600°C, while larger-sized carbides would remarkably soften the matrix to improve the toughness but deteriorate the tensile strength. Additionally, an increase in prior austenite grain size with the corresponding enlarged sub-boundaries obtained by high quenching temperatures substantially diminishes grain refinement strengthening, dislocation strengthening, and the energy absorbed in the crack propagation process, which is unfavorable to strength and toughness.

 

/

返回文章
返回