留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(16)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  253
  • HTML全文浏览量:  121
  • PDF下载量:  16
  • 被引次数: 0
T.A. Koltygina, V.E. Bazhenov, A.V. Koltygin, A.S. Prosviryakov, N.Y. Tabachkova, I.I. Baranov, A.A. Komissarov,  and A.I. Bazlov, Microstructure and mechanical properties of new Mg–Zn–Y–Zr alloys with high castability and ignition resistance, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2714-2726. https://doi.org/10.1007/s12613-024-2980-y
Cite this article as:
T.A. Koltygina, V.E. Bazhenov, A.V. Koltygin, A.S. Prosviryakov, N.Y. Tabachkova, I.I. Baranov, A.A. Komissarov,  and A.I. Bazlov, Microstructure and mechanical properties of new Mg–Zn–Y–Zr alloys with high castability and ignition resistance, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2714-2726. https://doi.org/10.1007/s12613-024-2980-y
引用本文 PDF XML SpringerLink
研究论文

高可铸性和耐燃性新型Mg–Zn–Y–Zr合金的组织和力学性能


  • 通讯作者:

    A.I. Bazlov    E-mail: bazlov@misis.ru

  • 本论文对新型MgZnYZr系合金进行了一系列复杂的研究。通过热力学计算确定了Mg –Z nYZr体系合金中形成的MgSS (Mg固溶体)+ LPSO(长周期有序堆积)两相结构的含量范围。研究了热处理工艺对合金显微组织、力学性能和腐蚀性能的影响。测定了合金的流动性、热裂趋势和着火温度。Mg2.4Zn4Y0.8Zr确定为合金铸造性能、力学性能和腐蚀性能的最佳组合。所研究的合金在技术性能方面优于工业上的同类合金,同时保持较高的腐蚀和力学性能。性能的提高是通过适当的热处理方式来实现的,该热处理机制提供了LPSO相的18R到14H改性的完全转变。
  • Research Article

    Microstructure and mechanical properties of new Mg–Zn–Y–Zr alloys with high castability and ignition resistance

    + Author Affiliations
    • Complex studies of new Mg–Zn–Y–Zr system alloys have been carried out. The content range for the formation of the two-phase structure MgSS (Mg solid solution) + LPSO (long-period stacking ordered) in alloys of the Mg–Zn–Y–Zr system was determined by thermodynamic calculations. The effect of heat treatment regimes on microstructure, mechanical, and corrosion properties was investigated. The fluidity, hot tearing tendency, and ignition temperature of the alloys were determined. The best combination of castability, mechanical, and corrosion properties was found for the Mg–2.4Zn–4Y–0.8Zr alloy. The alloys studied are superior to their industrial counterparts in terms of technological properties, while maintain high corrosion and mechanical properties. The increased level of properties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.
    • loading
    • [1]
      I.J. Polmear, Light Alloys : From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Oxford, 2005.
      [2]
      L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals : Structure and Properties, CRC Press, London, 2003.
      [3]
      D. Dvorský, J. Kubásek, K. Hosová, M. Čavojský, and D. Vojtěch, Microstructure, mechanical, corrosion, and ignition properties of WE43 alloy prepared by different processes, Metals, 11(2021), No. 5, art. No. 728. doi: 10.3390/met11050728
      [4]
      A. Luo and M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, J. Mater. Sci., 29(1994), No. 20, p. 5259. doi: 10.1007/BF01171534
      [5]
      Y. Kawamura, T. Kasahara, S. Izumi, and M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Mater., 55(2006), No. 5, p. 453. doi: 10.1016/j.scriptamat.2006.05.011
      [6]
      H. Shi, Q. Luo, Q. Li, J.Y. Zhang, and K.C. Chou, Design of heat-dissipating Mg–La–Zn alloys based on thermodynamic calculations, [in] J.B. Jordon, V. Miller, V.V. Joshi, and N.R. Neelameggham, eds., Magnesium Technology 2020, The Minerals, Metals & Materials Series, Springer, Cham, 2020, p. 101.
      [7]
      Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnesium Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
      [8]
      D.K. Xu, E.H. Han, and Y.B. Xu, Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review, Prog. Nat. Sci. Mater. Int., 26(2016), No. 2, p. 117. doi: 10.1016/j.pnsc.2016.03.006
      [9]
      Y.J. Nie, J.W. Dai, X. Li, and X.B. Zhang, Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures, J. Magnesium Alloys, 9(2021), No. 4, p. 1123. doi: 10.1016/j.jma.2020.09.021
      [10]
      L. Bao, Z.Q. Zhang, Q.C. Le, S. Zhang, and J.Z. Cui, Corrosion behavior and mechanism of Mg–Y–Zn–Zr alloys with various Y/Zn mole ratios, J. Alloys Compd., 712(2017), p. 15. doi: 10.1016/j.jallcom.2017.04.053
      [11]
      M. Yamasaki and Y. Kawamura, Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase, Scripta Mater., 60(2009), No. 4, p. 264. doi: 10.1016/j.scriptamat.2008.10.022
      [12]
      Z.P. Luo and S.Q. Zhang, High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg–Zn–Zr–Y magnesium alloy, J. Mater. Sci. Lett., 19(2000), No. 9, p. 813. doi: 10.1023/A:1006793411506
      [13]
      H.X. Liao, J. Kim, T. Lee, et al., Effect of heat treatment on LPSO morphology and mechanical properties of Mg–Zn–Y–Gd alloys, J. Magnesium Alloys, 8(2020), No. 4, p. 1120. doi: 10.1016/j.jma.2020.06.009
      [14]
      D. Wang, J.S. Zhang, J.D. Xu, Z.L. Zhao, W.L. Cheng, and C.X. Xu, Microstructure and corrosion behavior of Mg–Zn–Y–Al alloys with long-period stacking ordered structures, J. Magnesium Alloys, 2(2014), No. 1, p. 78. doi: 10.1016/j.jma.2014.01.008
      [15]
      S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, and W.Q. Wang, Effect of mole ratio of Y to Zn on phase constituent of Mg–Zn–Zr–Y alloys, Trans. Nonferrous Met. Soc. China, 21(2011), No. 4, p. 795. doi: 10.1016/S1003-6326(11)60783-8
      [16]
      Y.M. Zhu, A.J. Morton, and J.F. Nie, The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys, Acta Mater., 58(2010), No. 8, p. 2936. doi: 10.1016/j.actamat.2010.01.022
      [17]
      J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, and R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys, Acta Mater., 60(2012), No. 17, p. 5948. doi: 10.1016/j.actamat.2012.05.035
      [18]
      G. Shao, V. Varsani, Y. Wang, M. Qian, and Z. Fan, On the solidification microstructure of Mg–30Zn–2.5Y metal–intermetallic alloy, Intermetallics, 14(2006), No. 6, p. 596. doi: 10.1016/j.intermet.2005.10.001
      [19]
      D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han, Effect of W-phase on the mechanical properties of as-cast Mg–Zn–Y–Zr alloys, J. Alloys Compd., 461(2008), No. 1-2, p. 248. doi: 10.1016/j.jallcom.2007.07.096
      [20]
      V.E. Bazhenov, A.V. Koltygin, M.C. Sung, et al., Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnesium Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
      [21]
      V.E. Bazhenov, S.S. Saidov, Y.V. Tselovalnik, et al., Comparison of castability, mechanical, and corrosion properties of Mg–Zn–Y–Zr alloys containing LPSO and W phases, Trans. Nonferrous Met. Soc. China, 31(2021), No. 5, p. 1276. doi: 10.1016/S1003-6326(21)65577-2
      [22]
      D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han, Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys, J. Alloys Compd., 432(2007), No. 1-2, p. 129. doi: 10.1016/j.jallcom.2006.05.123
      [23]
      D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand, Grain refinement of magnesium alloys, Metall. Mater. Trans. A, 36(2005), No. 7, p. 1669. doi: 10.1007/s11661-005-0030-6
      [24]
      M. Qian and A. Das, Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains, Scripta Mater., 54(2006), No. 5, p. 881. doi: 10.1016/j.scriptamat.2005.11.002
      [25]
      W.N. Zhang, Z.X. Feng, X. Li, and Y.M. Chen, Effect of Zr content on the distribution characteristic of the 14H and 18R LPSO phases, Mater. Res., 23(2020), No. 1, art. No. e20190539. doi: 10.1590/1980-5373-mr-2019-0539
      [26]
      W. Rong, Y. Zhang, Y.J. Wu, et al., Effects of Zr and Mn additions on formation of LPSO structure and dynamic recrystallization behavior of Mg–15Gd–1Zn alloy, J. Alloys Compd., 692(2017), p. 805. doi: 10.1016/j.jallcom.2016.09.068
      [27]
      X. Zhao, L.L. Shi, and J. Xu, Biodegradable Mg–Zn–Y alloys with long-period stacking ordered structure: Optimization for mechanical properties, J. Mech. Behav. Biomed. Mater., 18(2013), p. 181. doi: 10.1016/j.jmbbm.2012.11.016
      [28]
      S.O. Rogachev, V.E. Bazhenov, A.A. Komissarov, et al., Effect of hot rolling on structure and mechanical properties of Mg–Y–Zn–Mn alloys, Metals, 13(2023), No. 2, art. No. 223. doi: 10.3390/met13020223
      [29]
      J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273. doi: 10.1016/S0364-5916(02)00037-8
      [30]
      V.E. Bazhenov, A.V. Petrova, and A.V. Koltygin, Simulation of fluidity and misrun prediction for the casting of 356.0 aluminum alloy into sand molds, Int. J. Met., 12(2018), No. 3, p. 514.
      [31]
      ASTM International, ASTM Standard G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, 2017.
      [32]
      N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater., 8(2012), No. 3, p. 925. doi: 10.1016/j.actbio.2011.11.014
      [33]
      V.E. Bazhenov, A.V. Koltygin, A. Komissarov, et al., Microstructure, mechanical and corrosion properties of biodegradable Mg–Ga–Zn–X (X = Ca, Y, Nd) alloys, [in] Metal 2018-27th International Conference on Metallurgy and Materials, Brno, 2018.
      [34]
      A.V. Petrova, V.E. Bazhenov, and A.V. Koltygin, Prediction of misruns in ML5 (AZ91) alloy casting and alloy fluidity using numerical simulation, Russ. J. Non Ferr. Met., 59(2018), No. 6, p. 617. doi: 10.3103/S1067821218060159
      [35]
      V.E. Bazhenov, A.V. Koltygin, M.C. Sung, et al., Design of Mg–Zn–Si–Ca casting magnesium alloy with high thermal conductivity, J. Magnesium Alloys, 8(2020), No. 1, p. 184. doi: 10.1016/j.jma.2019.11.008
      [36]
      F.J. Xing, F. Guo, J. Su, X.P. Zhao, and H.S. Cai, The existing forms of Zr in Mg–Zn–Zr magnesium alloys and its grain refinement mechanism, Mater. Res. Express, 8(2021), No. 6, art. No. 066516. doi: 10.1088/2053-1591/ac083c
      [37]
      R.C. Bonnah, Y. Fu, and H. Hao, Microstructure and mechanical properties of AZ91 magnesium alloy with minor additions of Sm, Si and Ca elements, China Foundry, 16(2019), No. 5, p. 319. doi: 10.1007/s41230-019-9067-9
      [38]
      H.M. Chen, D. Han, H.W. Cui, et al., Microstructures and properties of as-cast rare Earth magnesium alloy with LPSO phase, Mater. Res. Express, 6(2019), No. 9, art. No. 0965a5. doi: 10.1088/2053-1591/ab332d
      [39]
      M. Liu, D.S. Shih, C. Parish, and A. Atrens, The ignition temperature of Mg alloys WE43, AZ31 and AZ91, Corros. Sci., 54(2012), p. 139. doi: 10.1016/j.corsci.2011.09.004
      [40]
      W.M. Fassell, L.B. Gulbransen, J.R. Lewis, and J.H. Hamilton, Ignition temperatures of magnesium and magnesium alloys, JOM, 3(1951), No. 7, p. 522. doi: 10.1007/BF03397342
      [41]
      H. Hu, A. Yu, N.Y. Li, and J.E. Allison, Potential magnesium alloys for high temperature die cast automotive applications: A review, Mater. Manuf. Process., 18(2003), No. 5, p. 687. doi: 10.1081/AMP-120024970
      [42]
      Y.H. Kang, H. Yan, and R.S. Chen, Effects of heat treatment on the precipitates and mechanical properties of sand-cast Mg–4Y–2.3Nd–1Gd–0.6Zr magnesium alloy, Mater. Sci. Eng. A, 645(2015), p. 361. doi: 10.1016/j.msea.2015.08.041
      [43]
      C.Q. Li, D.K. Xu, Z.R. Zeng, et al., Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys, Mater. Des., 121(2017), p. 430. doi: 10.1016/j.matdes.2017.02.078
      [44]
      Z.Q. Zhang, X. Liu, W.Y. Hu, et al., Microstructures, mechanical properties and corrosion behaviors of Mg–Y–Zn–Zr alloys with specific Y/Zn mole ratios, J. Alloys Compd., 624(2015), p. 116. doi: 10.1016/j.jallcom.2014.10.177
      [45]
      G.L. Song, A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci., 41(1998), No. 2, p. 249. doi: 10.1016/S0010-938X(98)00121-8
      [46]
      L.L. Zhang, J.S. Zhang, R. Zhao, J.X. Zhang, and C.X. Xu, Research of the microstructure, mechanical property and corrosion behaviours of Mg–Y–Zn–Mn (–Mo) alloy with solution treatment, Corros. Eng. Sci. Technol., 56(2021), No. 5, p. 427. doi: 10.1080/1478422X.2021.1893942
      [47]
      V.E. Bazhenov, I.I. Baranov, V.V. Lyskovich, et al., Investigation of castability, mechanical, corrosion properties and flammability of ML-OPB and EWZ43 magnesium alloys, Izv. Vuz. Tsvet. Metall., 1(2023), No. 1, p. 39. doi: 10.17073/0021-3438-2023-1-39-55

    Catalog


    • /

      返回文章
      返回