留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(11)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  341
  • HTML全文浏览量:  147
  • PDF下载量:  23
  • 被引次数: 0
Choulong Veann, Thongsuk Sichumsaeng, Ornuma Kalawa, Narong Chanlek, Pinit Kidkhunthod,  and Santi Maensiri, Structure and electrochemical performance of delafossite AgFeO2 nanoparticles for supercapacitor electrodes, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2992-7
Cite this article as:
Choulong Veann, Thongsuk Sichumsaeng, Ornuma Kalawa, Narong Chanlek, Pinit Kidkhunthod,  and Santi Maensiri, Structure and electrochemical performance of delafossite AgFeO2 nanoparticles for supercapacitor electrodes, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2992-7
引用本文 PDF XML SpringerLink
研究论文

铜铁矿AgFeO2纳米粒子用于超级电容器电极的电化学性能


  • 通讯作者:

    Choulong Veann    E-mail: veannchoulong168@gmail.com

  • 采用简单的共沉淀法成功制备了具有2H和3R相混合六方结构的铜铁矿AgFeO₂纳米粒子。将所得前驱体在100、200、300、400和500°C的温度下煅烧,以获得铜铁矿AgFeO₂相。通过场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、Brunauer-Emmett-Teller N2吸附–解吸、X射线吸收光谱(XAS)和X射线光电子能谱(XPS)技术对制备的AgFeO₂样品的形态和微观结构进行了表征。采用三电极系统研究了铜铁矿AgFeO₂纳米粒子在3 M KOH电解质中的电化学性能。在100°C下煅烧的铜铁矿AgFeO₂纳米粒子(AFO100)显示出的高比表面积(28.02 m²∙g–1)和出色的电化学性能,在电流密度为1 A∙g–1时比电容为229.71 F∙g–1,在扫描速率为2 mV∙s−1时比容量为358.32 F∙g−1,且在1000次充电/放电循环后,电容保持率为82.99%,比功率和比能量值分别为797.46 W∙kg−1和72.74 Wh∙kg−1。这些发现表明,铜铁矿AgFeO₂作为超级电容器应用的电极材料具有巨大的潜力。
  • Research Article

    Structure and electrochemical performance of delafossite AgFeO2 nanoparticles for supercapacitor electrodes

    + Author Affiliations
    • Delafossite AgFeO2 nanoparticles with a mixture of 2H and 3R phases were successfully fabricated by using a simple co-precipitation method. The resulting precursor was calcined at temperatures of 100, 200, 300, 400, and 500°C to obtain the delafossite AgFeO2 phase. The morphology and microstructure of the prepared AgFeO2 samples were characterized by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), N2 adsorption/desorption, X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS) techniques. A three-electrode system was employed to investigate the electrochemical properties of the delafossite AgFeO2 nanoparticles in a 3 M KOH electrolyte. The delafossite AgFeO2 nanoparticles calcined at 100°C (AFO100) exhibited the highest surface area of 28.02 m2∙g−1 and outstanding electrochemical performance with specific capacitances of 229.71 F∙g−1 at a current density of 1 A∙g−1 and 358.32 F∙g−1 at a scan rate of 2 mV∙s−1. This sample also demonstrated the capacitance retention of 82.99% after 1000 charge/discharge cycles, along with superior specific power and specific energy values of 797.46 W∙kg−1 and 72.74 Wh∙kg−1, respectively. These findings indicate that delafossite AgFeO2 has great potential as an electrode material for supercapacitor applications.
    • loading
    • [1]
      M. Gopikrishnan, Battery/ultra capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles, Middle East J. Sci. Res., 20(2014), No. 9, p. 1122.
      [2]
      F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater., 26(2014), No. 14, p. 2219. doi: 10.1002/adma.201304137
      [3]
      M.A.A. Mohd Abdah, N.H.N. Azman, S. Kulandaivalu, and Y. Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors, Mater. Des., 186(2020), art. No. 108199. doi: 10.1016/j.matdes.2019.108199
      [4]
      S.D. Perera, M. Rudolph, R.G. Mariano, et al., Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors, Nano Energy, 2(2013), No. 5, p. 966. doi: 10.1016/j.nanoen.2013.03.018
      [5]
      K. Xie, X.T. Qin, X.Z. Wang, et al., Carbon nanocages as supercapacitor electrode materials, Adv. Mater., 24(2012), No. 3, p. 347. doi: 10.1002/adma.201103872
      [6]
      B.Z. Fang and L. Binder, A novel carbon electrode material for highly improved EDLC performance, J. Phys. Chem. B, 110(2006), No. 15, p. 7877. doi: 10.1021/jp060110d
      [7]
      J. Yu, N. Fu, J. Zhao, et al., High specific capacitance electrode material for supercapacitors based on resin-derived nitrogen-doped porous carbons, ACS Omega, 4(2019), No. 14, p. 15904. doi: 10.1021/acsomega.9b01916
      [8]
      C.Q. Yi, J.P. Zou, H.Z. Yang, and X. Leng, Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides, Trans. Nonferrous Met. Soc. China, 28(2018), No. 10, p. 1980. doi: 10.1016/S1003-6326(18)64843-5
      [9]
      S. Okashy, M. Noked, T. Zimrin, and D. Aurbach, The study of activated carbon/CNT/MoO3 electrodes for aqueous pseudo-capacitors, J. Electrochem. Soc., 160(2013), No. 9, p. A1489. doi: 10.1149/2.084309jes
      [10]
      Y. Liu, S.P. Jiang, and Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: Recent advances in fundamental understanding and materials development, Mater. Today Adv., 7(2020), art. No. 100072. doi: 10.1016/j.mtadv.2020.100072
      [11]
      Y.Y. Gao, S.L. Chen, D.X. Cao, G.L. Wang, and J.L. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam, J. Power Sources, 195(2010), No. 6, p. 1757. doi: 10.1016/j.jpowsour.2009.09.048
      [12]
      M.S. Wu and R.H. Lee, Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors, J. Electrochem. Soc., 156(2009), No. 9, art. No. A737. doi: 10.1149/1.3160547
      [13]
      S.Y. Wang, K.C. Ho, S.L. Kuo, and N.L. Wu, Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors, J. Electrochem. Soc., 153(2006), No. 1, art. No. A75. doi: 10.1149/1.2131820
      [14]
      K.W. Nam, W.S. Yoon, and K.B. Kim, X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors, Electrochim. Acta, 47(2002), No. 19, p. 3201. doi: 10.1016/S0013-4686(02)00240-2
      [15]
      J.G. Zhao, X.H. Zhang, S.J. Liu, W.Y. Zhang, and Z.J. Liu, Effect of Ni substitution on the crystal structure and magnetic properties of BiFeO3, J. Alloys Compd., 557(2013), p. 120. doi: 10.1016/j.jallcom.2013.01.005
      [16]
      X.H. Yang, Y.G. Wang, H.M. Xiong, and Y.Y. Xia, Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor, Electrochim. Acta, 53(2007), No. 2, p. 752. doi: 10.1016/j.electacta.2007.07.043
      [17]
      C.C. Hu and W.C. Chen, Effects of substrates on the capacitive performance of RuO x·nH2O and activated carbon–RuO x electrodes for supercapacitors, Electrochim. Acta, 49(2004), No. 21, p. 3469. doi: 10.1016/j.electacta.2004.03.017
      [18]
      I.H. Kim and K.B. Kim, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, J. Electrochem. Soc., 153(2006), No. 2, art. No. A383. doi: 10.1149/1.2147406
      [19]
      Q.T. Qu, S.B. Yang, and X.L. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors, Adv. Mater., 23(2011), No. 46, p. 5574. doi: 10.1002/adma.201103042
      [20]
      W.J. Croft, N.C. Tombs, and R.E. England, Crystallographic data for pure crystalline silver ferrite, Acta Crystallogr., 17(1964), No. 3, art. No. 313. doi: 10.1107/S0365110X64000755
      [21]
      S. Okamoto, S.I. Okamoto, and T. Ito, The crystal structure of a new hexagonal phase of AgFeO2, Acta Crystallogr., 28(1972), No. 6, p. 1774. doi: 10.1107/S056774087200500X
      [22]
      N. Terada, D.D. Khalyavin, P. Manuel, Y. Tsujimoto, and A.A. Belik, Magnetic ordering and ferroelectricity in multiferroic 2H-AgFeO2: Comparison between hexagonal and rhombohedral polytypes, Phys. Rev. B, 91(2015), No. 9, art. No. 094434. doi: 10.1103/PhysRevB.91.094434
      [23]
      W.C. Sheets, E. Mugnier, A. Barnabé, T.J. Marks, and K.R. Poeppelmeier, Hydrothermal synthesis of delafossite-type oxides, Chem. Mater., 18(2006), No. 1, p. 7. doi: 10.1021/cm051791c
      [24]
      J. Ahmed, N. Alhokbany, A. Husain, T. Ahmad, M.A. Majeed Khan, and S.M. Alshehri, Synthesis, characterization, and significant photochemical performances of delafossite AgFeO2 nanoparticles, J. Sol Gel Sci. Technol., 94(2020), No. 2, p. 493. doi: 10.1007/s10971-020-05274-3
      [25]
      H.N. Abdelhamid, A. Talib, and H.F. Wu, Correction: Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents, RSC Adv., 5(2015), No. 50, p. 39952. doi: 10.1039/C5RA90041G
      [26]
      L. Yin, Y.B. Shi, L. Lu, R.Y. Fang, X.K. Wan, and H.X. Shi, A novel delafossite structured visible-light sensitive AgFeO2 photocatalyst: Preparation, photocatalytic properties, and reaction mechanism, Catalysts, 6(2016), No. 5, art. No. 69. doi: 10.3390/catal6050069
      [27]
      E. Magdaluyo Jr and M. Veran, Synthesis and electrochemical study of AgFeO2 nanoparticles, Meet. Abstr., MA2020-01(2020), No. 28, art. No. 2177. doi: 10.1149/MA2020-01282177mtgabs
      [28]
      K.E. Farley, A.C. Marschilok, E.S. Takeuchi, and K.J. Takeuchi, Synthesis and electrochemistry of silver ferrite, Electrochem. Solid State Lett., 15(2011), No. 2, p. A23. doi: 10.1149/2.010202esl
      [29]
      P. Berastegui, C.W. Tai, and M. Valvo, Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries, J. Power Sources, 401(2018), p. 386. doi: 10.1016/j.jpowsour.2018.09.002
      [30]
      K. Siedliska, T. Pikula, D. Chocyk, and E. Jartych, Synthesis and characterization of AgFeO2 delafossite with non-stoichiometric silver concentration, Nukleonika, 62(2017), No. 2, p. 165. doi: 10.1515/nuka-2017-0025
      [31]
      K. Siedliska, J. Przewoźnik, M. Arczewska, M. Kosmulski, and E.Z. Jartych, Effect of annealing temperature on structural properties of the co-precipitated delafossite AgFeO2, Mater. Res. Express, 6(2019), No. 8, art. No. 086113. doi: 10.1088/2053-1591/ab26f9
      [32]
      A.N. Singh, R. Mondal, C. Rath, and P. Singh, Electrochemical performance of delafossite, AgFeO2: A pseudo-capacitive electrode in neutral aqueous Na2SO4 electrolyte, J. Electrochem. Soc., 168(2021), No. 12, art. No. 120512. doi: 10.1149/1945-7111/ac3c23
      [33]
      P.M. Anjana, P.R. Ranjani, and R.B. Rakhi, Cu–Fe based oxides and selenides as advanced electrode materials for high performance symmetric supercapacitors, Mater. Lett., 296(2021), art. No. 129827. doi: 10.1016/j.matlet.2021.129827
      [34]
      H.H. Joo, C.V.V.M. Gopi, R. Vinodh, H.J. Kim, S. Sambasivam, and I.M. Obaidat, Facile synthesis of flexible and binder-free dandelion flower-like CuNiO2 nanostructures as advanced electrode material for high-performance supercapacitors, J. Energy Storage, 26(2019), art. No. 100914. doi: 10.1016/j.est.2019.100914
      [35]
      R. Manickam, J. Yesuraj, and K. Biswas, Doped CuCrO2: A possible material for supercapacitor applications, Mater. Sci. Semicond. Process., 109(2020), art. No. 104928. doi: 10.1016/j.mssp.2020.104928
      [36]
      F. Bahmani, S.H. Kazemi, Y.H. Wu, L. Liu, Y. Xu, and Y. Lei, CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors, Chem. Eng. J., 375(2019), art. No. 121966. doi: 10.1016/j.cej.2019.121966
      [37]
      Y.Y. Mao, Y.W. Yang, X.W. Meng, et al., A facile approach to prepare novel coral-like Ag3C6H5O7 microstructures for surface-enhanced Raman scattering, Chem. Lett., 45(2016), No. 2, p. 232. doi: 10.1246/cl.151043
      [38]
      T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254(2008), No. 8, p. 2441. doi: 10.1016/j.apsusc.2007.09.063
      [39]
      P. Mills and J.L. Sullivan, A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy, J. Phys. D Appl. Phys., 16(1983), No. 5, p. 723. doi: 10.1088/0022-3727/16/5/005
      [40]
      D.D. Hawn and B.M. DeKoven, Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides, Surf. Interface Anal., 10(1987), No. 2-3, p. 63. doi: 10.1002/sia.740100203
      [41]
      M. Muhler, R. Schlögl, and G. Ertl, The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase, J. Catal., 138(1992), No. 2, p. 413. doi: 10.1016/0021-9517(92)90295-S
      [42]
      H.W. Che, A.F. Liu, J.B. Mu, C.X. Wu, and X.L. Zhang, Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors, Ceram. Int., 42(2016), No. 2, p. 2416. doi: 10.1016/j.ceramint.2015.10.041
      [43]
      C.M. Wang, C.Y. Wen, Y.C. Chen, et al., The Influence of Specific Surface Area on the Capacitance of the Carbon Electrodes Supercapacitor, [in] The Proceedings of the 3rd International Conference on Industrial Application Engineering, Kitakyushu, 2015, p. 439.
      [44]
      Y. Suda, A. Mizutani, T. Harigai, H. Takikawa, H. Ue, and Y. Umeda, Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors, [in] AIP Conference Proceedings, Tokyo, 2017.
      [45]
      U. Wongpratat, P. Tipsawat, J. Khajonrit, E. Swatsitang, and S. Maensiri, Effects of nickel and magnesium on electrochemical performances of partial substitution in spinel ferrite, J. Alloys Compd., 831(2020), art. No. 154718. doi: 10.1016/j.jallcom.2020.154718
      [46]
      R. Pai, A. Singh, S. Simotwo, and V. Kalra, In situ grown iron oxides on carbon nanofibers as freestanding anodes in aqueous supercapacitors, Adv. Eng. Mater., 20(2018), No. 6, art. No. 1701116. doi: 10.1002/adem.201701116
      [47]
      K. Anderson, B. Poulter, J. Dudgeon, S.E. Li, and X. Ma, A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2, Sensors, 17(2017), No. 8, art. No. 1807. doi: 10.3390/s17081807
      [48]
      C. van der Horst, B. Silwana, E. Iwuoha, and V. Somerset, Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples, J. Electroanal. Chem., 752(2015), p. 1. doi: 10.1016/j.jelechem.2015.06.001
      [49]
      W.M. Latimer, The oxidation states of the elements and their potentials in aqueous solutions, Soil Sci., 48(1939), No. 4, art. No. 349.
      [50]
      H. Jiang, L.P. Yang, C.Z. Li, C.Y. Yan, P.S. Lee, and J. Ma, High-rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires, Energy Environ. Sci., 4(2011), No. 5, p. 1813. doi: 10.1039/c1ee01032h
      [51]
      M. Sethi, U.S. Shenoy, and D.K. Bhat, A porous graphene–NiFe2O4 nanocomposite with high electrochemical performance and high cycling stability for energy storage applications, Nanoscale Adv., 2(2020), No. 9, p. 4229. doi: 10.1039/D0NA00440E
      [52]
      K. Karuppasamy, D. Vikraman, J.H. Jeon, et al., Highly porous, hierarchical microglobules of Co3O4 embedded N-doped carbon matrix for high performance asymmetric supercapacitors, Appl. Surf. Sci., 529(2020), art. No. 147147. doi: 10.1016/j.apsusc.2020.147147
      [53]
      F. Barzegar, D.Y. Momodu, O.O. Fashedemi, A. Bello, J.K. Dangbegnon, and N. Manyala, Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors, RSC Adv., 5(2015), No. 130, p. 107482. doi: 10.1039/C5RA21962K

    Catalog


    • /

      返回文章
      返回