留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(9)

数据统计

分享

计量
  • 文章访问数:  266
  • HTML全文浏览量:  128
  • PDF下载量:  19
  • 被引次数: 0
Zhihao Tian, Chunlei Shang, Chaolei Zhang, Xiaoye Zhou, Honghui Wu, Shuize Wang, Guilin Wu, Junheng Gao, Jiaming Zhu, and Xinping Mao, Review of precipitation strengthening in ultrahigh-strength martensitic steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2994-5
Cite this article as:
Zhihao Tian, Chunlei Shang, Chaolei Zhang, Xiaoye Zhou, Honghui Wu, Shuize Wang, Guilin Wu, Junheng Gao, Jiaming Zhu, and Xinping Mao, Review of precipitation strengthening in ultrahigh-strength martensitic steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2994-5
引用本文 PDF XML SpringerLink
综述

超高强度马氏体钢析出强化研究综述


    * 共同第一作者
  • 通讯作者:

    张朝磊    E-mail: zhangchaolei@ustb.edu.cn

    吴宏辉    E-mail: wuhonghui@ustb.edu.cn

文章亮点

  • (1) 从碳化物和金属间化合物两个方面系统地总结了超高强度马氏体钢中常见的析出相。
  • (2) 从热处理工艺、微观组织结构和力学性能方面综合分析了超高强度马氏体钢中常见的析出相的析出强化效果。
  • (3) 对未来超高强度马氏体钢的强韧化研究和发展做出系统性的展望。
  • 超高强钢因其优异的力学性能被广泛应用于交通运输、海洋工程、航空航天及国防军事等领域。马氏体是超高强度钢中一种重要的微观组织,通常在马氏体基体中引入析出相以提高超高强钢的强度。尽管在此领域进行了大量的研究,但目前仍缺乏对这些进展的系统性总结和分析。本文重点介绍了超高强度马氏体钢中常见的析出相,主要包括碳化物(如MC、M2C和M3C)和金属间化合物(如NiAl、Ni3X和Fe2Mo)。从热处理工艺、析出强化马氏体基体组织和力学性能等方面探讨了这些析出物对超高强度马氏体钢的析出强化作用,并分析了析出强化的机理。此外,还提出了在确保超高强度马氏体钢强度的前提下,如何有效提升其韧性的方法,以解决传统高强度钢材料脆性的问题。最后,对析出强化马氏体钢的发展前景进行了展望,旨在为这一领域的进一步研究与应用提供新的思路与建议,从而推动超高强度马氏体钢的发展与创新。
  • Review

    Review of precipitation strengthening in ultrahigh-strength martensitic steel

    + Author Affiliations
    • Martensite is an important microstructure in ultrahigh-strength steels, and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix. Despite considerable research efforts devoted to this area, a systematic summary of these advancements is lacking. This review focuses on the precipitates prevalent in ultrahigh-strength martensitic steel, primarily carbides (e.g., MC, M2C, and M3C) and intermetallic compounds (e.g., NiAl, Ni3X, and Fe2Mo). The precipitation-strengthening effect of these precipitates on ultrahigh-strength martensitic steel is discussed from the aspects of heat treatment processes, microstructure of precipitate-strengthened martensite matrix, and mechanical performance. Finally, a perspective on the development of precipitation-strengthened martensitic steel is presented to contribute to the advancement of ultrahigh-strength martensitic steel. This review highlights significant findings, ongoing challenges, and opportunities in the development of ultrahigh-strength martensitic steel.
    • loading
    • [1]
      H. Dong, X.T. Lian, C.D. Hu, et al., High performance steels: The scenario of theory and technology, Acta Metall. Sin., 56(2020), No. 4, p. 558.
      [2]
      I. Nedelcu and I. Carceanu, Some aspects concerning the mechanism of hardening of maraging 300 steel, Metall. Int., 18(2013), p. 95.
      [3]
      A.K. da Silva, I.R.S. Filho, W. Lu, et al., A sustainable ultra-high strength Fe18Mn3Ti maraging steel through controlled solute segregation and α-Mn nanoprecipitation, Nat. Commun., 13(2022), No. 1, art. No. 2330. doi: 10.1038/s41467-022-30019-x
      [4]
      D.P.M. da Fonseca, A.L.M. Feitosa, L.G. de Carvalho, R.L. Plaut, and A.F. Padilha, A short review on ultra-high-strength maraging steels and future perspectives, Mater. Res., 24(2021), No. 1, art. No. e20200470. doi: 10.1590/1980-5373-mr-2020-0470
      [5]
      T.J.B. Alves, G.C.S. Nunes, L.F.S. Tupan, et al., Aging-induced transformations of maraging-400 alloys, Metall. Mater. Trans. A, 49(2018), No. 8, p. 3441.
      [6]
      U.K. Viswanathan, G.K. Dey, and M.K. Asundi, Precipitation hardening in 350 grade maraging steel, Metall. Trans. A, 24(1993), No. 11, p. 2429. doi: 10.1007/BF02646522
      [7]
      Y. He, K. Yang, W.S. Qu, F.Y. Kong, and G.Y. Su, Strengthening and toughening of a 2800-MPa grade maraging steel, Mater. Lett., 56(2002), No. 5, p. 763. doi: 10.1016/S0167-577X(02)00610-9
      [8]
      Y. He, K. Yang, W. Sha, and D.J. Cleland, Microstructure and mechanical properties of a 2000 MPa Co-free maraging steel after aging at 753 K, Metall. Mater. Trans. A, 35(2004), No. 9, p. 2747. doi: 10.1007/s11661-004-0221-6
      [9]
      W. Xu, P.E.J. Rivera-Díaz-del-Castillo, W. Wang, et al., Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates, Acta Mater., 58(2010), No. 10, p. 3582. doi: 10.1016/j.actamat.2010.02.028
      [10]
      Y.P. Zhang, D.P. Zhan, X.W. Qi, and Z.H. Jiang, Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel, Mater. Charact., 144(2018), p. 393.
      [11]
      H.L. Zhang, G.Q. Zhang, H.C. Zhou, et al., Influence of cooling rate during cryogenic treatment on the hierarchical microstructure and mechanical properties of M54 secondary hardening steel, Mater. Sci. Eng. A, 851(2022), art. No. 143659.
      [12]
      X.Y. Li, Z.H. Zhang, L.J. Liu, et al., Structure transformations and mechanical properties of the ultra-high-strength M54 steel produced by spark plasma sintering, Powder Metall. Met. Ceram., 61(2022), No. 1, p. 40.
      [13]
      R. Veerababu, R. Balamuralikrishnan, and S. Karthikeyan, Nanoscale clusters in secondary hardening ultra-high strength steels with 1 and 3 wt% Mo: An atom probe investigation, J. Mater. Res., 35(2020), No. 14, p. 1763. doi: 10.1557/jmr.2020.145
      [14]
      R. Veerababu, R. Balamuralikrishnan, K. Muraleedharan, and M. Srinivas, Investigation of clusters in medium carbon secondary hardening ultra-high-strength steel after hardening and aging treatments, Metall. Mater. Trans. A, 46(2015), No. 6, p. 2455. doi: 10.1007/s11661-015-2843-2
      [15]
      Y.K. Kim, K.S. Kim, Y.B. Song, J.H. Park, and K.A. Lee, 2.47 GPa grade ultra-strong 15Co–12Ni secondary hardening steel with superior ductility and fracture toughness, J. Mater. Sci. Technol., 66(2021), p. 36. doi: 10.1016/j.jmst.2020.06.014
      [16]
      X.Y. Li, Z.H. Zhang, X.W. Cheng, G.J. Huo, Q. Song, and Y. Xu, Direct achievement of ultra-high strength and good ductility for high Co–Ni secondary hardening steel by combining spark plasma sintering and deformation, Mater. Lett., 290(2021), art. No. 129465. doi: 10.1016/j.matlet.2021.129465
      [17]
      Y.P. Zhang, D.P. Zhan, X.W. Qi, and Z.H. Jiang, Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength ferrium S53® steel, Mater. Sci. Eng. A, 730(2018), p. 41.
      [18]
      Y.B. Xiong, D.X. Wen, Z.Z. Zheng, and J.J. Li, Effect of interlayer temperature on microstructure evolution and mechanical performance of wire arc additive manufactured 300M steel, Mater. Sci. Eng. A, 831(2022), art. No. 142351. doi: 10.1016/j.msea.2021.142351
      [19]
      A. Bag, D. Delbergue, P. Bocher, M. Lévesque, and M. Brochu, Statistical analysis of high cycle fatigue life and inclusion size distribution in shot peened 300M steel, Int. J. Fatigue, 118(2019), p. 126. doi: 10.1016/j.ijfatigue.2018.08.009
      [20]
      M.A.S. Torres and H.J.C. Voorwald, An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, Int. J. Fatigue, 24(2002), No. 8, p. 877. doi: 10.1016/S0142-1123(01)00205-5
      [21]
      S. Floreen, The physical metallurgy of maraging steels, Metall. Rev., 13(1968), No. 1, p. 115.
      [22]
      K. Manigandan, T.S. Srivatsan, D. Tammana, B. Poorganji, and V.K. Vasudevan, Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100, Mater. Sci. Eng. A, 601(2014), p. 29. doi: 10.1016/j.msea.2014.01.094
      [23]
      X.L. Wang, Z.J. Xie, X.C. Li, and C.J. Shang, Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1298. doi: 10.1007/s12613-023-2781-8
      [24]
      Z.P. Lu, S.H. Jiang, J.Y. He, et al., Second phase strengthening in advanced metal materials, Acta Metall. Sin., 52(2016), No. 10, p. 1183.
      [25]
      J. Dong, X.S. Zhou, Y.C. Liu, C. Li, C.X. Liu, and Q.Y. Guo, Carbide precipitation in Nb–V–Ti microalloyed ultra-high strength steel during tempering, Mater. Sci. Eng. A, 683(2017), p. 215. doi: 10.1016/j.msea.2016.12.019
      [26]
      Y.F. Li, X. Cheng, D. Liu, and H.M. Wang, Influence of last stage heat treatment on microstructure and mechanical properties of laser additive manufactured AF1410 steel, Mater. Sci. Eng. A, 713(2018), p. 75. doi: 10.1016/j.msea.2017.12.029
      [27]
      A. Mondiere, V. Déneux, N. Binot, and D. Delagnes, Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance, Mater. Charact., 140(2018), p. 103.
      [28]
      X.D. Nong, X.J. Xiong, X. Gu, et al., A novel low-cost ultra-strong maraging steel by additive manufacturing, Mater. Sci. Eng. A, 887(2023), art. No. 145747. doi: 10.1016/j.msea.2023.145747
      [29]
      D.P.M. da Fonseca, M.V.P. Altoé, B.S. Archanjo, E. Annese, and A.F. Padilha, Influence of Mo content on the precipitation behavior of 13Ni maraging ultra-high strength steels, Metals, 13(2023), No. 12, art. No. 1929. doi: 10.3390/met13121929
      [30]
      M. Zhou, H.H. Wu, Y. Wu, et al., Phase field modeling of grain stability of nanocrystalline alloys by explicitly incorporating mismatch strain, Rare Met., 43(2024), No. 7, p. 3370. doi: 10.1007/s12598-024-02678-w
      [31]
      D.C. Ramachandran, J. Moon, C.H. Lee, et al., Role of bainitic microstructures with M–A constituent on the toughness of an HSLA steel for seismic resistant structural applications, Mater. Sci. Eng. A, 801(2021), art. No. 140390. doi: 10.1016/j.msea.2020.140390
      [32]
      H.K. Dong, H. Chen, A.R. Khorasgani, et al., Revealing the influence of Mo addition on interphase precipitation in Ti-bearing low carbon steels, Acta Mater., 223(2022), art. No. 117475.
      [33]
      L.Y. Kan, Q.B. Ye, Z.D. Wang, and T. Zhao, Improvement of strength and toughness of 1 GPa Cu-bearing HSLA steel by direct quenching, Mater. Sci. Eng. A, 855(2022), art. No. 143875. doi: 10.1016/j.msea.2022.143875
      [34]
      C. Ledermueller, H.I. Pratiwi, R.F. Webster, M. Eizadjou, S.P. Ringer, and S. Primig, Microalloying effects of Mo versus Cr in HSLA steels with ultrafine-grained ferrite microstructures, Mater. Des., 185(2020), art. No. 108278. doi: 10.1016/j.matdes.2019.108278
      [35]
      Z.D. Wang, G.F. Sun, M.Z. Chen, et al., Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance, Addit. Manuf., 39(2021), art. No. 101884.
      [36]
      J. Lu, H. Yu, and S.F. Yang, Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution, Mater. Sci. Eng. A, 803(2021), art. No. 140493.
      [37]
      Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
      [38]
      S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas, Modern HSLA steels and role of non-recrystallisation temperature, Int. Mater. Rev., 57(2012), No. 4, p. 187. doi: 10.1179/1743280411Y.0000000013
      [39]
      T.N. Baker, Microalloyed steels, Ironmaking Steelmaking, 43(2016), No. 4, p. 264. doi: 10.1179/1743281215Y.0000000063
      [40]
      S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 645. doi: 10.1007/s12613-021-2399-7
      [41]
      C. Ioannidou, Z. Arechabaleta, A. Navarro-López, et al., Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels, Acta Mater., 181(2019), p. 10. doi: 10.1016/j.actamat.2019.09.046
      [42]
      P. Gong, X.G. Liu, A. Rijkenberg, and W.M. Rainforth, The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium, Acta Mater., 161(2018), p. 374.
      [43]
      J. Lu, S.Z. Wang, H. Yu, et al., Effect of precipitation on the mechanical behavior of vanadium micro-alloyed HSLA steel investigated by microstructural evolution and strength modeling, Mater. Sci. Eng. A, 881(2023), art. No. 145313. doi: 10.1016/j.msea.2023.145313
      [44]
      Y. Snir, S. Haroush, A. Dannon, A. Landau, D. Eliezer, and Y. Gelbstein, Aging condition and trapped hydrogen effects on the mechanical behavior of a precipitation hardened martensitic stainless steel, J. Alloys Compd., 805(2019), p. 509. doi: 10.1016/j.jallcom.2019.07.112
      [45]
      G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
      [46]
      T. Sonar, S. Lomte, and C. Gogte, Cryogenic treatment of metal–A review, Mater. Today Proc., 5(2018), No. 11, p. 25219.
      [47]
      D. Das, A.K. Dutta, and K.K. Ray, Influence of varied cryotreatment on the wear behavior of AISI D2 steel, Wear, 266(2009), No. 1-2, p. 297. doi: 10.1016/j.wear.2008.07.001
      [48]
      Z.J. Yan, K. Liu, and J. Eckert, Effect of tempering and deep cryogenic treatment on microstructure and mechanical properties of Cr–Mo–V–Ni steel, Mater. Sci. Eng. A, 787(2020), art. No. 139520. doi: 10.1016/j.msea.2020.139520
      [49]
      X.G. Yan and D.Y. Li, Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel, Wear, 302(2013), No. 1-2, p. 854.
      [50]
      D. Das, A.K. Dutta, and K.K. Ray, Inconsistent wear behaviour of cryotreated tool steels: Role of mode and mechanism, Mater. Sci. Technol., 25(2009), No. 10, p. 1249. doi: 10.1179/174328408X374685
      [51]
      P. Mónica, P.M. Bravo, and D. Cárdenas, Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties, J. Mater. Process. Technol., 239(2017), p. 297. doi: 10.1016/j.jmatprotec.2016.08.029
      [52]
      T. Sonar, S. Lomte, C. Gogte, and V. Balasubramanian, Minimization of distortion in heat treated AISI D2 tool steel: Mechanism and distortion analysis, Procedia Manuf., 20(2018), p. 113.
      [53]
      M.A. Jaswin and D.M. Lal, Effect of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures, Mater. Des., 32(2011), No. 4, p. 2429. doi: 10.1016/j.matdes.2010.11.065
      [54]
      A.Y.L. Yong, K.H.W. Seah, and M. Rahman, Performance of cryogenically treated tungsten carbide tools in milling operations, Int. J. Adv. Manuf. Technol., 32(2007), No. 7, p. 638.
      [55]
      K. Vadivel and R. Rudramoorthy, Performance analysis of cryogenically treated coated carbide inserts, Int. J. Adv. Manuf. Technol., 42(2009), No. 3, p. 222.
      [56]
      Z.J. Weng, K.X. Gu, K.K. Wang, X.Z. Liu, and J.J. Wang, The reinforcement role of deep cryogenic treatment on the strength and toughness of alloy structural steel, Mater. Sci. Eng. A, 772(2020), art. No. 138698. doi: 10.1016/j.msea.2019.138698
      [57]
      Z. Yang, Z.B. Liu, J.X. Liang, Z.Y. Yang, and G.M. Sheng, Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel, Mater. Charact., 178(2021), art. No. 111277.
      [58]
      Y. Kimura, T. Inoue, F.X. Yin, and K. Tsuzaki, Inverse temperature dependence of toughness in an ultrafine grain-structure steel, Science, 320(2008), No. 5879, p. 1057. doi: 10.1126/science.1156084
      [59]
      B.B. He, B. Hu, H.W. Yen, et al., High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029. doi: 10.1126/science.aan0177
      [60]
      S.H. Jiang, H. Wang, Y. Wu, et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature, 544(2017), p. 460. doi: 10.1038/nature22032
      [61]
      J.J. Sun, Y.N. Liu, Y.T. Zhu,et al., Super-strong dislocation-structured high-carbon martensite steel, Sci. Rep., 7(2017), art. No. 6596.
      [62]
      Y.H. Gao, S.Z. Liu, X.B. Hu, et al., A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness, Mater. Sci. Eng. A, 759(2019), p. 298. doi: 10.1016/j.msea.2019.05.039
      [63]
      M.S. Baek, Y.K. Kim, T.W. Park, J. Ham, and K.A. Lee, Hot-rolling and a subsequent direct-quenching process enable superior high-cycle fatigue resistance in ultra-high strength low alloy steels, Materials, 13(2020), No. 20, art. No. 4651. doi: 10.3390/ma13204651
      [64]
      Y.J. Wang, J.J. Sun, T. Jiang, Y. Sun, S.W. Guo, and Y.N. Liu, A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility, Acta Mater., 158(2018), p. 247.
      [65]
      J.M. Zhu, H.H. Wu, Y. Wu, et al., Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation, Acta Mater., 207(2021), art. No. 116665. doi: 10.1016/j.actamat.2021.116665
      [66]
      Z.J. Gao, S.Z. Wang, H.H. Wu, J.Y. Li, and X.P. Mao, Understanding the mismatch strain and orientation of nanoscale second phase on the superelasticity of zirconia, Compos. Commun., 22(2020), art. No. 100521. doi: 10.1016/j.coco.2020.100521
      [67]
      M. Kapoor, D. Isheim, S. Vaynman, M.E. Fine, and Y.W. Chung, Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels, Acta Mater., 104(2016), p. 166. doi: 10.1016/j.actamat.2015.11.041
      [68]
      B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, and Z.B. Jiao, Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning, Acta Mater., 205(2021), art. No. 116561. doi: 10.1016/j.actamat.2020.116561
      [69]
      W.W. Sun, R.K.W. Marceau, M.J. Styles, D. Barbier, and C.R. Hutchinson, G phase precipitation and strengthening in ultra-high strength ferritic steels: Towards lean ‘maraging’ metallurgy, Acta Mater., 130(2017), p. 28. doi: 10.1016/j.actamat.2017.03.032
      [70]
      J. Millán, S. Sandlöbes, A. Al-Zubi, et al., Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe–Mn maraging steels, Acta Mater., 76(2014), p. 94.
      [71]
      M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, and Y.W. Chung, Aging characteristics and mechanical properties of 1600MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel, Acta Mater., 73(2014), p. 56. doi: 10.1016/j.actamat.2014.03.051
      [72]
      Y. Li, W. Li, W.Q. Liu, et al., The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching–partitioning–tempering steel, Acta Mater., 146(2018), p. 126. doi: 10.1016/j.actamat.2017.12.035
      [73]
      Z.B. Jiao, J.H. Luan, M.K. Miller, and C.T. Liu, Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles, Acta Mater., 97(2015), p. 58. doi: 10.1016/j.actamat.2015.06.063
      [74]
      X.C. Yang, X.J. Di, Q.Y. Duan, W. Fu, L.Z. Ba, and C.N. Li, Effect of precipitation evolution of NiAl and Cu nanoparticles on strengthening mechanism of low carbon ultra-high strength seamless tube steel, Mater. Sci. Eng. A, 872(2023), art. No. 144939.
      [75]
      W. Sha, A. Ye, S. Malinov, and E.A. Wilson, Microstructure and mechanical properties of low nickel maraging steel, Mater. Sci. Eng. A, 536(2012), p. 129. doi: 10.1016/j.msea.2011.12.086
      [76]
      F. Qian, J. Sharp, and W.M. Rainforth, Microstructural evolution of Mn-based maraging steels and their influences on mechanical properties, Mater. Sci. Eng. A, 674(2016), p. 286.
      [77]
      A. Behravan, A. Zarei-Hanzaki, S.M. Fatemi, H.F.G. De Abreu, and M. Masoumi, The effect of aging temperature on microstructure and tensile properties of a novel designed Fe–12Mn–3Ni maraging-TRIP steel, Steel Res. Int., 90(2019), No. 2, art. No. 1800282. doi: 10.1002/srin.201800282
      [78]
      K. Li, L. Wei, B. Yu, and R.D.K. Misra, Reverted austenite with distinct characteristics in a new cobalt-free low lattice misfit precipitate-bearing 19Ni3Mo1.5Ti maraging steel, Mater. Lett., 257(2019), art. No. 126692. doi: 10.1016/j.matlet.2019.126692
      [79]
      F. Qian and W.M. Rainforth, The formation mechanism of reverted austenite in Mn-based maraging steels, J. Mater. Sci., 54(2019), No. 8, p. 6624. doi: 10.1007/s10853-019-03319-9
      [80]
      E.I. Galindo-Nava, W.M. Rainforth, and P.E.J. Rivera-Díaz-del-Castillo, Predicting microstructure and strength of maraging steels: Elemental optimisation, Acta Mater., 117(2016), p. 270.
      [81]
      H.L. Zhang, M.Y. Sun, D.P. Ma, et al., Effect of aging temperature on the heterogeneous microstructure and mechanical properties of a 12Cr–10Ni–Mo–Ti maraging steel for cryogenic applications, J. Mater. Sci., 56(2021), No. 19, p. 11469. doi: 10.1007/s10853-021-05993-0
      [82]
      S. Bodziak, K.S. Al-Rubaie, L.D. Valentina, et al., Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510 °C for 2 h, Mater. Charact., 151(2019), p. 73. doi: 10.1016/j.matchar.2019.02.033
      [83]
      E.A. Jägle, P.P. Choi, J.V. Humbeeck, and D. Raabe, Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting, J. Mater. Res., 29(2014), No. 17, p. 2072. doi: 10.1557/jmr.2014.204
      [84]
      V.K. Vasudevan, S.J. Kim, and C.M. Wayman, Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels, Metall. Trans. A, 21(1990), No. 10, p. 2655.
      [85]
      T.Z. Xu, S. Zhang, Y. Du, et al., Development and characterization of a novel maraging steel fabricated by laser additive manufacturing, Mater. Sci. Eng. A, 891(2024), art. No. 145975. doi: 10.1016/j.msea.2023.145975
      [86]
      Y. Du, T.Z. Xu, S. Zhang, et al., Effect of aging treatment on the microstructure and tribological properties of a new maraging steel manufactured by laser directed energy deposition, Mater. Charact., 209(2024), art. No. 113767. doi: 10.1016/j.matchar.2024.113767
      [87]
      J.M. Pardal, S.S.M. Tavares, V.F. Terra, M.R.D. Silva, and D.R.D. Santos, Modeling of precipitation hardening during the aging and overaging of 18Ni–Co–Mo–Ti maraging 300 steel, J. Alloys Compd., 393(2005), No. 1-2, p. 109. doi: 10.1016/j.jallcom.2004.09.049
      [88]
      J.J.M. da Silva, I.F. de Vasconcelos, F.I.S. da Silva, T.S. Ribeiro, and H.F.G. de Abreu, An atomic redistribution study of the 440°C ageing kinetics in maraging-300 steel, Mater. Res., 22(2019), No. 1, art. No. e20180230.
      [89]
      T.Z. Xu, S. Zhang, L. Wang, et al., Influence of scanning speed on the microstructure, nanoindentation characteristics and tribological behavior of novel maraging steel coatings by laser cladding, Mater. Charact., 205(2023), art. No. 113335. doi: 10.1016/j.matchar.2023.113335
      [90]
      M. El-Meligy, T. El-Bitar, and S. Ebied, Creation of fine lath martensite combined with nano needle like structured carbides in ultra high strength (UHS) military Steel, J. Ultrafine Grained Nanostruct. Mater., 56(2023), No. 2, p. 173.
      [91]
      M.J. Yang, C. Huang, Z.F. Yao, et al., Development of a high-strength Fe–12Mn maraging steel via designing lath interfacial and intragranular nanostructures, Mater. Sci. Eng. A, 886(2023), art. No. 145280. doi: 10.1016/j.msea.2023.145280
      [92]
      Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Yang, and H. Su, The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel, Acta Metall. Sin., 55(2019), No. 6, p. 783.
      [93]
      T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol., 15(1999), No. 1, p. 30. doi: 10.1179/026708399773002782
      [94]
      L. Proville and B. Bakó, Dislocation depinning from ordered nanophases in a model fcc crystal: From cutting mechanism to Orowan looping, Acta Mater., 58(2010), No. 17, p. 5565. doi: 10.1016/j.actamat.2010.06.018
      [95]
      Q.H. Fang, L. Li, J. Li, et al., A statistical theory of probability-dependent precipitation strengthening in metals and alloys, J. Mech. Phys. Solids, 122(2019), p. 177.
      [96]
      P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
      [97]
      Z.J. Xie, Y.P. Fang, G. Han, H. Guo, R.D.K. Misra, and C.J. Shang, Structure–property relationship in a 960MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering, Mater. Sci. Eng. A, 618(2014), p. 112. doi: 10.1016/j.msea.2014.08.072

    Catalog


    • /

      返回文章
      返回