留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(12)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  169
  • HTML全文浏览量:  62
  • PDF下载量:  13
  • 被引次数: 0
Di Zhang, Pengfei Lv, Wei Qin, Xin He, and Yuanhua He, Recent progress in constructing fluorinated solid–electrolyte interphases for stable lithium metal anodes, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2996-3
Cite this article as:
Di Zhang, Pengfei Lv, Wei Qin, Xin He, and Yuanhua He, Recent progress in constructing fluorinated solid–electrolyte interphases for stable lithium metal anodes, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2996-3
引用本文 PDF XML SpringerLink

构建稳定锂金属负极氟化SEI的研究进展

  • 通讯作者:

    何欣    E-mail: xinhe@scu.edu.cn

    贺元骅    E-mail: heyuanhua@cafuc.edu.cn

文章亮点

  • (1) 系统地回顾了优化 LiF 钝化界面以保护锂金属阳极的研究
  • (2) 重点介绍了氟化SEI中四类与LiF起协同作用以增强 SEI 性能的成分
  • (3) 总结并提出了未来氟化界面材料协同与结构设计的建议
  • 高能量密度和高比容量使锂金属电池 (LMB)成为一种极具前途的储能解决方案。然而,在长循环过程中的锂(Li)的不均匀沉积和固体电解质界面(SEI)的破碎会导致枝晶生长而穿透隔膜,进一步带来短路风险。因此,形成稳定的SEI对电池稳定长循环至关重要。优异的富氟SEI因其能有效钝化电极、调节锂沉积和抑制电解质腐蚀而备受关注,了解现有氟化SEI的结构组分和制备方法对于进一步优化锂金属负极性能是十分必要的。本文回顾了近年来优化 LiF 钝化界面以保护锂金属负极的研究,重点介绍了氟化SEI中四种与LiF起协同作用以增强 SEI 性能的成分。其中,将化合物与LiF复合可以进一步提升SEI的机械强度和离子电导率,将金属与LiF复合显著改善了SEI/负极界面的电化学性能,重点是降低了电子隧穿概率。此外,聚合物与LiF复合可相对综合的改善界面韧性和离子电导率,但在长循环下的保持结构稳定性仍是未来应关注的。锂基合金层与LiF复合提高了表面能和亲锂性的同时,枝晶生长和体积膨胀的挑战仍然存在。总之,本文强调了界面结构在 LMB 中的关键作用,并为未来负极界面的设计和开发工作提供了全面的指导。
  • Review

    Recent progress in constructing fluorinated solid–electrolyte interphases for stable lithium metal anodes

    + Author Affiliations
    • Lithium metal batteries (LMBs) are emerging as a promising energy storage solution owing to their high energy density and specific capacity. However, the non-uniform plating of lithium and the potential rupture of the solid–electrolyte interphase (SEI) during extended cycling use may result in dendrite growth, which can penetrate the separator and pose significant short-circuit risks. Forming a stable SEI is essential for the long-term operation of the batteries. Fluorine-rich SEI has garnered significant attention for its ability to effectively passivate electrodes, regulate lithium deposition, and inhibit electrolyte corrosion. Understanding the structural components and preparation methods of existing fluorinated SEI is crucial for optimizing lithium metal anode performance. This paper reviews the research on optimizing LiF passivation interfaces to protect lithium metal anodes. It focuses on four types of compositions in fluorinated SEI that work synergistically to enhance SEI performance. For instance, combining compounds with LiF can further enhance the mechanical strength and ionic conductivity of the SEI. Integrating metals with LiF significantly improves electrochemical performance at the SEI/anode interface, with a necessary focus on reducing electron tunneling risks. Additionally, incorporating polymers with LiF offers balanced improvements in interfacial toughness and ionic conductivity, though maintaining structural stability over long cycles remains a critical area for future research. Although alloys combined with LiF increase surface energy and lithium affinity, challenges such as dendrite growth and volume expansion persist. In summary, this paper emphasizes the crucial role of interfacial structures in LMBs and offers comprehensive guidance for future design and development efforts in battery technology.
    • loading
    • [1]
      T. Placke, R. Kloepsch, S. Dühnen, and M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density, J. Solid State Electrochem., 21(2017), No. 7, p. 1939. doi: 10.1007/s10008-017-3610-7
      [2]
      L. Grande, E. Paillard, J. Hassoun, et al., The lithium/air battery: Still an emerging system or a practical reality?, Adv. Mater., 27(2015), No. 5, p. 784. doi: 10.1002/adma.201403064
      [3]
      P. Albertus, S. Babinec, S. Litzelman, and A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3(2018), p. 16.
      [4]
      J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter, and P. Bieker, Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries, J. Electrochem. Soc., 162(2015), No. 6, p. A1094. doi: 10.1149/2.0011507jes
      [5]
      K.Z. Cao, S.T. Wang, Y.N. He, J.H. Ma, Z.W. Yue, and H.Q. Liu, Constructing Al@C–Sn pellet anode without passivation layer for lithium-ion battery, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 552. doi: 10.1007/s12613-023-2720-8
      [6]
      T. Wei, Q. Zhang, S.J. Wang, et al., A gel polymer electrolyte with IL@UiO-66–NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1897. doi: 10.1007/s12613-023-2639-0
      [7]
      W.D. Zhang, Q. Wu, J.X. Huang, et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries, Adv. Mater., 32(2020), No. 24, art. No. 2001740. doi: 10.1002/adma.202001740
      [8]
      X.L. Chen, Y.D. Gong, X. Li, F. Zhan, X.H. Liu, and J.M. Ma, Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 1. doi: 10.1007/s12613-022-2541-1
      [9]
      X.B. Cheng, J.Q. Huang, and Q. Zhang, Review—Li metal anode in working lithium–sulfur batteries, J. Electrochem. Soc., 165(2017), No. 1, p. A6058.
      [10]
      X.B. Cheng, C. Yan, X.Q. Zhang, H. Liu, and Q. Zhang, Electronic and ionic channels in working interfaces of lithium metal anodes, ACS Energy Lett., 3(2018), No. 7, p. 1564. doi: 10.1021/acsenergylett.8b00526
      [11]
      Y.Y. Lu, Z.Y. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13(2014), No. 10, p. 961. doi: 10.1038/nmat4041
      [12]
      K. Yan, Z.D. Lu, H.W. Lee, et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1(2016), No. 3, art. No. 16010. doi: 10.1038/nenergy.2016.10
      [13]
      E. Peled, Film forming reaction at the lithium/electrolyte interface, J. Power Sources, 9(1983), No. 3, p. 253. doi: 10.1016/0378-7753(83)87026-8
      [14]
      Y.F. Zhou, M. Su, X.F. Yu, et al., Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery, Nat. Nanotechnol., 15(2020), No. 3, p. 224. doi: 10.1038/s41565-019-0618-4
      [15]
      G. Nazri and R.H. Muller, Composition of surface layers on Li electrodes in PC, LiClO4 of very low water content, J. Electrochem. Soc., 132(1985), No. 9, p. 2050. doi: 10.1149/1.2114288
      [16]
      D. Aurbach, M.L. Daroux, P.W. Faguy, and E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions, J. Electrochem. Soc., 134(1987), No. 7, art. No. 1611. doi: 10.1149/1.2100722
      [17]
      M. Garreau, Cyclability of the lithium electrode, J. Power Sources, 20(1987), No. 1-2, p. 9. doi: 10.1016/0378-7753(87)80085-X
      [18]
      J. Thevenin, Passivating films on lithium electrodes. An approach by means of electrode impedance spectroscopy, J. Power Sources, 14(1985), No. 1-3, p. 45. doi: 10.1016/0378-7753(85)88009-5
      [19]
      J.G. Thevenin and R.H. Muller, Impedance of lithium electrodes in a propylene carbonate electrolyte, J. Electrochem. Soc., 134(1987), No. 2, p. 273. doi: 10.1149/1.2100445
      [20]
      S.S. Zhang, K. Xu, and T.R. Jow, Enhanced performance of Li-ion cell with LiBF4–PC based electrolyte by addition of small amount of LiBOB, J. Power Sources, 156(2006), No. 2, p. 629. doi: 10.1016/j.jpowsour.2005.04.023
      [21]
      G.W. Zheng and T. Wei, Batteries: Just a spoonful of LiPF6, Nat. Energy, 2(2017), No. 3, art. No. 17029. doi: 10.1038/nenergy.2017.29
      [22]
      T.Z. Hou, G. Yang, N.N. Rajput, et al., The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation, Nano Energy, 64(2019), art. No. 103881. doi: 10.1016/j.nanoen.2019.103881
      [23]
      J. Ko and Y.S. Yoon, Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?, Ceram. Int., 45(2019), No. 1, p. 30. doi: 10.1016/j.ceramint.2018.09.287
      [24]
      T. Li, X.Q. Zhang, P. Shi, and Q. Zhang, Fluorinated solid–electrolyte interphase in high-voltage lithium metal batteries, Joule, 3(2019), No. 11, p. 2647. doi: 10.1016/j.joule.2019.09.022
      [25]
      J. Zhao, L. Liao, F.F. Shi, et al., Surface fluorination of reactive battery anode materials for enhanced stability, J. Am. Chem. Soc., 139(2017), No. 33, p. 11550. doi: 10.1021/jacs.7b05251
      [26]
      Y.Y. Liu, D.C. Lin, Y.Z. Li, et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nat. Commun., 9(2018), No. 1, art. No. 3656. doi: 10.1038/s41467-018-06077-5
      [27]
      J.L. Lang, Y.Z. Long, J.L. Qu, et al., One-pot solution coating of high quality LiF layer to stabilize Li metal anode, Energy Storage Mater., 16(2019), p. 85. doi: 10.1016/j.ensm.2018.04.024
      [28]
      W. Liu, J.X. Li, H.Y. Xu, J. Li, and X.P. Qiu, Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 917. doi: 10.1007/s12613-022-2483-7
      [29]
      S.S. Liu, Y.L. Ma, J.J. Wang, et al., Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode, Chem. Eng. J., 427(2022), art. No. 131625. doi: 10.1016/j.cej.2021.131625
      [30]
      Q.L. Zhang, J. Pan, P. Lu, et al., Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries, Nano Lett., 16(2016), No. 3, p. 2011. doi: 10.1021/acs.nanolett.5b05283
      [31]
      L. Fan, H.L. Zhuang, L.N. Gao, Y.Y. Lu, and L.A. Archer, Regulating Li deposition at artificial solid electrolyte interphases, J. Mater. Chem. A, 5(2017), No. 7, p. 3483. doi: 10.1039/C6TA10204B
      [32]
      D.C. Lin, Y.Y. Liu, W. Chen, et al., Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon, Nano Lett., 17(2017), No. 6, p. 3731. doi: 10.1021/acs.nanolett.7b01020
      [33]
      Y. Xu, Y.W. Sun, Y. Sun, H.Y. Fang, Y. Jiang, and B. Zhao, Theoretical calculation study on the electrochemical properties of lithium halide-based artificial SEI films for lithium metal anodes, Surf. Interfaces, 44(2024), art. No. 103768. doi: 10.1016/j.surfin.2023.103768
      [34]
      B. Ouyang, N. Artrith, Z.Y. Lun, et al., Effect of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes, Adv. Energy Mater., 10(2020), No. 10, art. No. 1903240. doi: 10.1002/aenm.201903240
      [35]
      Z. Liu, Y. Qi, Y.X. Lin, L. Chen, P. Lu, and L.Q. Chen, Interfacial study on solid electrolyte interphase at Li metal anode: mplication for Li dendrite growth, J. Electrochem. Soc., 163(2016), No. 3, art. No. A592. doi: 10.1149/2.0151605jes
      [36]
      M.F. He, R. Guo, G.M. Hobold, H.N. Gao, and B.M. Gallant, The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium, Proc. Natl. Acad. Sci., 117(2020), No. 1, p. 73. doi: 10.1073/pnas.1911017116
      [37]
      L. Chen, K.S. Chen, X.J. Chen, et al., Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes, ACS Appl. Mater. Interfaces, 10(2018), No. 32, p. 26972. doi: 10.1021/acsami.8b04573
      [38]
      X.L. Fan, X. Ji, F.D. Han, et al., Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv., 4(2018), No. 12, art. No. eaau9245. doi: 10.1126/sciadv.aau9245
      [39]
      Y.X. Yuan, F. Wu, G.H. Chen, Y. Bai, and C. Wu, Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode, J. Energy Chem., 37(2019), p. 197. doi: 10.1016/j.jechem.2019.03.014
      [40]
      C. Monroe and J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152(2005), No. 2, art. No. A396. doi: 10.1149/1.1850854
      [41]
      S. Yu, R.D. Schmidt, R. Garcia-Mendez, et al., Elastic properties of the solid electrolyte Li7La3Zr2O12(LLZO), Chem. Mater., 28(2016), No. 1, p. 197. doi: 10.1021/acs.chemmater.5b03854
      [42]
      J. Ko and Y.S. Yoon, Lithium fluoride layer formed by thermal evaporation for stable lithium metal anode in rechargeable batteries, Thin Solid Films, 673(2019), p. 119. doi: 10.1016/j.tsf.2019.01.048
      [43]
      Y.L. Wang, F.M. Liu, G.L. Fan, et al., Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes, J. Am. Chem. Soc., 143(2021), No. 7, p. 2829. doi: 10.1021/jacs.0c12051
      [44]
      S.F. Liu, X. Ji, J. Yue, et al., High interfacial-energy interphase promoting safe lithium metal batteries, J. Am. Chem. Soc., 142(2020), No. 5, p. 2438. doi: 10.1021/jacs.9b11750
      [45]
      F.A. Soto, P.F. Yan, M.H. Engelhard, et al., Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon, Adv. Mater., 29(2017), No. 18, art. No. 1606860. doi: 10.1002/adma.201606860
      [46]
      J. Xie, L. Liao, Y.J. Gong, et al., Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Sci. Adv., 3(2017), No. 11, art. No. eaao3170. doi: 10.1126/sciadv.aao3170
      [47]
      X.W. Shen, Y.T. Li, T. Qian, et al., Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Commun., 10(2019), art. No. 900. doi: 10.1038/s41467-019-08767-0
      [48]
      Q. Jin, K.X. Zhao, J.H. Wang, et al., Modulating electron conducting properties at lithium anode interfaces for durable lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 48, p. 53850. doi: 10.1021/acsami.2c16362
      [49]
      J. Yang, J.M. Hou, Z.X. Fang, et al., Simultaneously in situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode, Chem. Eng. J., 433(2022), art. No. 133193. doi: 10.1016/j.cej.2021.133193
      [50]
      Z.D. Li, L.Y. Huai, S. Li, et al., Insight into bulk charge transfer of lithium metal anodes by synergism of nickel seeding and LiF–Li3N–Li2S co-doped interphase, Energy Storage Mater., 37(2021), p. 491. doi: 10.1016/j.ensm.2021.02.033
      [51]
      Z. Peng, N. Zhao, Z.G. Zhang, et al., Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains, Nano Energy, 39(2017), p. 662. doi: 10.1016/j.nanoen.2017.07.052
      [52]
      X. Ji, S. Hou, P.F. Wang, et al., Solid-state electrolyte design for lithium dendrite suppression, Adv. Mater.,32(2020), No. 46, art. No.2002741.
      [53]
      A.J. Hu, W. Chen, X.C. Du, et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode, Energy Environ. Sci., 14(2021), No. 7, p. 4115. doi: 10.1039/D1EE00508A
      [54]
      J.Y. Wei, X.Q. Zhang, L.P. Hou, et al., Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium–sulfur batteries, Adv. Mater., 32(2020), No. 37, art. No. 2003012. doi: 10.1002/adma.202003012
      [55]
      Y.P. Sun, Y. Zhao, J.W. Wang, et al., A novel organic “polyurea” thin film for ultralong-life lithium–metal anodes via molecular-layer deposition, Adv. Mater., 31(2019), No. 4, art. No. 1806541. doi: 10.1002/adma.201806541
      [56]
      S.X. Deng, Y.P. Sun, X. Li, et al., Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries, ACS Energy Lett., 5(2020), No. 4, p. 1243. doi: 10.1021/acsenergylett.0c00256
      [57]
      C. Yan, X.B. Cheng, Y. Tian, et al., Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition, Adv. Mater., 30(2018), No. 25, art. No. 1707629. doi: 10.1002/adma.201707629
      [58]
      R. Xu, X.Q. Zhang, X.B. Cheng, et al., Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater., 28(2018), No. 8, art. No. 1705838. doi: 10.1002/adfm.201705838
      [59]
      S.G. Guo, N. Piao, L. Wang, et al., PVDF–HFP/LiF composite interfacial film to enhance the stability of Li–metal anodes, ACS Appl. Energy Mater., 3(2020), No. 7, p. 7191. doi: 10.1021/acsaem.0c01232
      [60]
      S.M. Xu, H. Duan, J.L. Shi, et al. , In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes, Nano Res., 13(2020), No. 2, p. 430. doi: 10.1007/s12274-020-2625-z
      [61]
      C.W. Ma, G. Mu, H.J. Lv, et al. , In situ-formed flexible three-dimensional honeycomb-like film for a LiF/Li3N-enriched hybrid organic–inorganic interphase on the Li metal anode, Mater. Chem. Front., 5(2021), No. 13, p. 5082. doi: 10.1039/D1QM00185J
      [62]
      C.Y. Fu and C. Battaglia, Polymer–inorganic nanocomposite coating with high ionic conductivity and transference number for a stable lithium metal anode, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41620. doi: 10.1021/acsami.0c13485
      [63]
      S.F. Liu, X.H. Xia, S.J. Deng, et al. , In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium–metal anodes, Adv. Mater., 31(2019), No. 3, art. No. e1806470. doi: 10.1002/adma.201806470
      [64]
      N.W Li, Y.X Yin, C.P Yang, and Y.G Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28(2016), No. 9, p. 1853. doi: 10.1002/adma.201504526
      [65]
      Q.F. Yang, J.L. Hu, J.W. Meng, and C.L. Li, C–F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode, Energy Environ. Sci., 14(2021), No. 6, p. 3621. doi: 10.1039/D0EE03952G
      [66]
      Y. Gao, Z.F. Yan, J.L. Gray, et al., Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions, Nat. Mater., 18(2019), No. 4, p. 384. doi: 10.1038/s41563-019-0305-8
      [67]
      C.Z. Zhao, X.Q. Zhang, X.B. Cheng, et al., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes, Proc. Natl. Acad. Sci., 114(2017), No. 42, p. 11069. doi: 10.1073/pnas.1708489114
      [68]
      S. Wenzel, S. Randau, T. Leichtweiß, et al., Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode, Chem. Mater., 28(2016), No. 7, p. 2400. doi: 10.1021/acs.chemmater.6b00610
      [69]
      X.Q. Yu, J.P. Sun, K. Tang, et al., Reversible lithium storage in LiF/Ti nanocomposites, Phys. Chem. Chem. Phys., 11(2009), No. 41, art. No. 9497. doi: 10.1039/b908149f
      [70]
      J.H. Yan, J.Y. Yu, and B. Ding, Mixed ionic and electronic conductor for Li–metal anode protection, Adv. Mater., 30(2018), No. 7, art. No. 1705105. doi: 10.1002/adma.201705105
      [71]
      J. Maier, Defect chemistry in heterogeneous systems, Solid State Ionics, 75(1995), p. 139. doi: 10.1016/0167-2738(94)00222-E
      [72]
      C. Yan, X.B. Cheng, Y.X. Yao, et al., An armored mixed conductor interphase on a dendrite-free lithium–metal anode, Adv. Mater., 30(2018), No. 45, art. No. 1804461. doi: 10.1002/adma.201804461
      [73]
      T. Lapp, Ionic conductivity of pure and doped Li3N, Solid State Ionics, 11(1983), No. 2, p. 97. doi: 10.1016/0167-2738(83)90045-0
      [74]
      U.V. Alpen, A. Rabenau, and G.H. Talat, Ionic conductivity in Li3N single crystals, Appl. Phys. Lett., 30(1977), No. 12, p. 621. doi: 10.1063/1.89283
      [75]
      J.R. Li, H. Su, M. Li, et al., Fluorinated interface layer with embedded zinc nanoparticles for stable lithium–metal anodes, ACS Appl. Mater. Interfaces, 13(2021), No. 15, p. 17690. doi: 10.1021/acsami.1c02868
      [76]
      P.L. Li, W.L. Feng, X.L. Dong, Y.G. Wang, and Y.Y. Xia, A new strategy of constructing a highly fluorinated solid–electrolyte interface towards high-performance lithium anode, Adv. Mater. Interfaces, 7(2020), No. 11, art. No. 2000154. doi: 10.1002/admi.202000154
      [77]
      L.W. Tan, C.L. Wei, Y.C. Zhang, Y.L. An, S.L. Xiong, and J.K. Feng, LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries, Chem. Eng. J., 442(2022), art. No. 136243. doi: 10.1016/j.cej.2022.136243
      [78]
      W.W. Hou, S.B. Li, J.X. Liang, B. Yuan, and R.Z. Hu, Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasma treatment for highly stable Li metal anode, Electrochim. Acta, 402(2022), art. No. 139561. doi: 10.1016/j.electacta.2021.139561
      [79]
      Z. Peng, J.H. Song, L.Y. Huai, et al., Enhanced stability of Li metal anodes by synergetic control of nucleation and the solid electrolyte interphase, Adv. Energy Mater., 9(2019), No. 42, art. No. 1901764. doi: 10.1002/aenm.201901764
      [80]
      H.Y. Zhang, S.L. Ju, G.L. Xia, D.L. Sun, and X.B. Yu, Dendrite-free Li–metal anode enabled by dendritic structure, Adv. Funct. Mater., 31(2021), No. 16, art. No. 2009712. doi: 10.1002/adfm.202009712
      [81]
      W. Guo, Q. Han, J.R. Jiao, et al. , In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life, Angew. Chem. Int. Ed., 60(2021), No. 13, p. 7267. doi: 10.1002/anie.202015049
      [82]
      X.Y. Xu, Y.Y. Liu, J.Y. Hwang, et al., Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode, Adv. Energy Mater., 10(2020), No. 44, art. No. 2002390. doi: 10.1002/aenm.202002390
      [83]
      L.F. Ai, Z.Y. Chen, S.P. Li, et al., Stabilizing Li plating by a fluorinated hybrid protective layer, ACS Appl. Energy Mater., 4(2021), No. 12, p. 14407. doi: 10.1021/acsaem.1c03078
      [84]
      L. Gan, K. Wang, Y.Y. Liu, et al., Dendrite-free Li-metal anode via a dual-function protective interphase layer for stable Li–metal pouch cell, Sustain. Mater. Technol., 36(2023), art. No. e00585.
      [85]
      A.C. Balazs, T. Emrick, and T.P. Russell, Nanoparticle polymer composites: Where two small worlds meet?, Science, 314(2006), No. 5802, p. 1107. doi: 10.1126/science.1130557
      [86]
      R. Krishnamoorti, Strategies for dispersing nanoparticles in polymers, MRS Bull., 32(2007), No. 4, p. 341. doi: 10.1557/mrs2007.233
      [87]
      J.L. Jiang, Y.H. Ou, S.Y. Lu, et al. , In-situ construction of Li–Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery, Energy Storage Mater., 50(2022), p. 810. doi: 10.1016/j.ensm.2022.06.011
      [88]
      R. Pathak, K. Chen, A. Gurung, et al., Fluorinated hybrid solid–electrolyte-interphase for dendrite-free lithium deposition, Nat. Commun., 11(2020), No. 1, art. No. 93. doi: 10.1038/s41467-019-13774-2
      [89]
      B.K. Hu, W. Yu, B.Q. Xu, et al., An in situ-formed mosaic Li7Sn3/LiF interface layer for high-rate and long-life garnet-based lithium metal batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 38, p. 34939. doi: 10.1021/acsami.9b10534
      [90]
      H.S. Wang, D.C. Lin, Y.Y. Liu, Y.Z. Li, and Y. Cui, Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework, Sci. Adv., 3(2017), No. 9, art. No. e1701301. doi: 10.1126/sciadv.1701301
      [91]
      T.R. Wang, J. Duan, B. Zhang, et al., A self-regulated gradient interphase for dendrite-free solid-state Li batteries, Energy Environ. Sci., 15(2022), No. 3, p. 1325. doi: 10.1039/D1EE03604A
      [92]
      Z.S. Wang, Z.M. Xu, X.J. Jin, et al., Dendrite-free and air-stable lithium metal batteries enabled by electroless plating with aluminum fluoride, J. Mater. Chem. A, 8(2020), No. 18, p. 9218. doi: 10.1039/D0TA02410D
      [93]
      M.K. Song, J.H. Yim, S.H. Baek, and J.W. Lee, A carbon cloth with a coating layer containing aluminum fluoride as an interlayer for lithium metal batteries, Appl. Surf. Sci., 588(2022), art. No. 152935. doi: 10.1016/j.apsusc.2022.152935
      [94]
      L.L. Wang, S.Y. Fu, T. Zhao, et al. , In situ formation of a LiF and Li–Al alloy anode protected layer on a Li metal anode with enhanced cycle life, J. Mater. Chem. A, 8(2020), No. 3, p. 1247. doi: 10.1039/C9TA10965J
      [95]
      F. Li, Y.H. Tan, Y.C. Yin, et al., A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes, Chem. Sci., 10(2019), No. 42, p. 9735. doi: 10.1039/C9SC01845J

    Catalog


    • /

      返回文章
      返回