留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(14)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  266
  • HTML全文浏览量:  121
  • PDF下载量:  24
  • 被引次数: 0
Fei Weng, Guijun Bi, Youxiang Chew, Shang Sui, Chaolin Tan, Zhenglin Du, Jinlong Su,  and Fern Lan Ng, Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-3003-8
Cite this article as:
Fei Weng, Guijun Bi, Youxiang Chew, Shang Sui, Chaolin Tan, Zhenglin Du, Jinlong Su,  and Fern Lan Ng, Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-3003-8
引用本文 PDF XML SpringerLink
研究论文

基于送粉和送丝的激光辅助增材制造Ti–6Al–4V的稳健界面与优异打印态力学性能


  • 通讯作者:

    毕贵军    E-mail: gj.bi@giim.ac.cn

    周友翔    E-mail: chewyx@simtech.a-star.edu.sg

文章亮点

  • (1) 采用送粉和送丝激光辅助增材制造成功制备了Ti–6Al–4V 合金及其界面样品。
  • (2) 揭示了送粉、送丝激光辅助增材制造和锻造Ti–6Al–4V合金之间的稳固界面特征。
  • (3) 阐明了沉积态样品机械性能与其微观组织结构之间的内在联系。
  • 本研究探讨了基于送粉激光辅助增材制造(LAAMp)和送丝激光辅助增材制造(LAAMw)制备Ti–6Al–4V样件的可行性。首先,通过LAAMp和LAAMw工艺研究成功规避了Ti–6Al–4V沉积物中的缺陷。进而,利用优化的工艺参数,在粉末/丝材沉积物与锻造基材之间以及粉末与丝材沉积物之间实现了牢固的结合界面。微观组织表征结果显示,Ti–6Al–4V沉积物中存在外延的初生β晶粒,在β晶粒内部,粉末沉积物主要以较细的α′相为主,而丝材沉积物则主要以片层状α相为主。本文分析并讨论了样件中不同微观组织的形成机制及其与力学性能的内在关联。即使未经热处理,粉末沉积物和丝材沉积物界面样件的力学性能也能达到相关航空材料规范(AMS 6932)的要求。在拉伸实验后,断裂未发生在界面区域,进一步表明了界面的牢固性。本研究证实了通过LAAMp和LAAMw相结合直接制造Ti–6Al–4V零件的可行性,可在满足所需尺寸精度和沉积速率的同时保证其强度与延展性。
  • Research Article

    Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire

    + Author Affiliations
    • The feasibility of manufacturing Ti–6Al–4V samples through a combination of laser-aided additive manufacturing with powder (LAAMp) and wire (LAAMw) was explored. A process study was first conducted to successfully circumvent defects in Ti–6Al–4V deposits for LAAMp and LAAMw, respectively. With the optimized process parameters, robust interfaces were achieved between powder/wire deposits and the forged substrate, as well as between powder and wire deposits. Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti–6Al–4V, wherein the powder deposit was dominated by a finer α′ microstructure and the wire deposit was characterized by lamellar α phases. The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed. The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications (AMS 6932) even without post heat treatment. No fracture occurred within the interfacial area, further suggesting the robust interface. The findings of this study highlighted the feasibility of combining LAAMp and LAAMw in the direct manufacturing of Ti–6Al–4V parts in accordance with the required dimensional resolution and deposition rate, together with sound strength and ductility balance in the as-built condition.
    • loading
    • [1]
      G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, 2007.
      [2]
      C.L. Tan, F. Weng, S. Sui, Y. Chew, and G.J. Bi, Progress and perspectives in laser additive manufacturing of key aeroengine materials, Int. J. Mach. Tools Manuf., 170(2021), art. No. 103804. doi: 10.1016/j.ijmachtools.2021.103804
      [3]
      S.H. Pan, G.C. Yao, Y.N. Cui, et al., Additive manufacturing of tungsten, tungsten-based alloys, and tungsten matrix composites, Tungsten, 5(2023), No. 1, p. 1. doi: 10.1007/s42864-022-00153-6
      [4]
      H.J. Zong, N. Kang, Z.H. Qin, and M. El Mansori, A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 1048. doi: 10.1007/s12613-023-2731-5
      [5]
      X.M. Cai, Y. Hou, W. Zhang, et al., Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 737. doi: 10.1007/s12613-024-2865-0
      [6]
      D.C. Kong, C.F. Dong, X.Q. Ni, et al., Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 266. doi: 10.1007/s12613-020-2147-4
      [7]
      S.Y. Liu and Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Mater. Des., 164(2019), art. No. 107552. doi: 10.1016/j.matdes.2018.107552
      [8]
      T.L. Zhang and C.T. Liu, Design of titanium alloys by additive manufacturing: A critical review, Adv. Powder Mater., 1(2022), No. 1, art. No. 100014. doi: 10.1016/j.apmate.2021.11.001
      [9]
      Y.W. Luo, M.Y. Wang, J.G. Tu, Y. Jiang, and S.Q. Jiao, Reduction of residual stress in porous Ti6Al4V by in situ double scanning during laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1844. doi: 10.1007/s12613-020-2212-z
      [10]
      L. Lan, R.Y. Xin, X.Y. Jin, S. Gao, and B. He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1780. doi: 10.1007/s12613-021-2322-2
      [11]
      Singapore Institute of Manufacturing Technology (SIMTech), Joint Collaboration Aims to Enable Mass Industry Adoption of LAAM Technology, SIMTech [2022-10-23]. https://www.a-star.edu.sg/simtech/news-events/SIMTech-Manufacturing-Matters/MM/research-spotlight/joint-collaboration-aims-to-enable-mass-industry-adoption-of-laam-technology
      [12]
      Singapore Institute of Manufacturing Technology (SIMTech), Laser Aided Additive Manufacturing (LAAM ), SIMTech [2022-10-23]. https://www.a-star.edu.sg/Collaborate/programmes-for-smes/tech-access/additive-manufacturing/laser-aided-additive-manufacturing-(laam
      [13]
      Singapore Institute of Manufacturing Technology (SIMTech), Hybrid Laser Aided Additive Manufacturing Technology Platform, SIMTech [2022-10-23]. https://www.a-star.edu.sg/simtech/news-events/SIMTech-Manufacturing-Matters/MM/research-spotlight/hybrid-laser-aided-additive-manufacturing-technology-platform
      [14]
      F. Weng, Y.F. Liu, Y. Chew, L.L. Wang, B.Y. Lee, and G.J. Bi, Repair feasibility of SS416 stainless steel via laser aided additive manufacturing with SS410/Inconel625 powders, IOP Conf. Ser. Mater. Sci. Eng., 744(2020), No. 1, art. No. 012031. doi: 10.1088/1757-899X/744/1/012031
      [15]
      Z.Q. Liu, R.X. Ma, G.J. Xu, W. Wang, and J. Liu, Laser additive manufacturing of bimetallic structure from Ti–6Al–4V to Ti–48Al–2Cr–2Nb via vanadium interlayer, Mater. Lett., 263(2020), art. No. 127210. doi: 10.1016/j.matlet.2019.127210
      [16]
      H. Paydas, A. Mertens, R. Carrus, J. Lecomte-Beckers, and J.T. Tchuindjang, Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness, Mater. Des., 85(2015), p. 497. doi: 10.1016/j.matdes.2015.07.035
      [17]
      X.Z. Shi, S.Y. Ma, C.M. Liu, et al., Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti–6Al–4V alloy: Microstructure and mechanical properties, Mater. Sci. Eng. A, 684(2017), p. 196. doi: 10.1016/j.msea.2016.12.065
      [18]
      Q. Liu, Y.D. Wang, H. Zheng, et al., Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy, Mater. Sci. Eng. A, 660(2016), p. 24. doi: 10.1016/j.msea.2016.02.069
      [19]
      L. Yan, Y.T. Chen, and F. Liou, Additive manufacturing of functionally graded metallic materials using laser metal deposition, Addit. Manuf., 31(2020), art. No. 100901.
      [20]
      A. Reichardt, A.A. Shapiro, R. Otis, et al., Advances in additive manufacturing of metal-based functionally graded materials, Int. Mater. Rev., 66(2021), No. 1, p. 1. doi: 10.1080/09506608.2019.1709354
      [21]
      M. Rauch, J.Y. Hascoët, and M. Mallaiah, Repairing Ti–6Al–4V aeronautical components with DED additive manufacturing, MATEC Web Conf., 321(2020), art. No. 03017. doi: 10.1051/matecconf/202032103017
      [22]
      Y.W. Zhai, D.A. Lados, E.J. Brown, and G.N. Vigilante, Understanding the microstructure and mechanical properties of Ti–6Al–4V and Inconel 718 alloys manufactured by Laser Engineered Net Shaping, Addit. Manuf., 27(2019), p. 334.
      [23]
      Z. Zhao, J. Chen, H. Tan, X. Lin, and W.D. Huang, Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy, Opt. Laser Technol., 92(2017), p. 36. doi: 10.1016/j.optlastec.2016.12.038
      [24]
      Y.Y. Zhu, J. Li, X.J. Tian, H.M. Wang, and D. Liu, Microstructure and mechanical properties of hybrid fabricated Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy by laser additive manufacturing, Mater. Sci. Eng. A, 607(2014), p. 427. doi: 10.1016/j.msea.2014.04.019
      [25]
      S.H. Mok, G.J. Bi, J. Folkes, and I. Pashby, Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: Investigation on the process characteristics, Surf. Coat. Technol., 202(2008), No. 16, p. 3933. doi: 10.1016/j.surfcoat.2008.02.008
      [26]
      A. Ho, H. Zhao, J.W. Fellowes, F. Martina, A.E. Davis, and P.B. Prangnell, On the origin of microstructural banding in Ti–6Al4V wire-arc based high deposition rate additive manufacturing, Acta Mater., 166(2019), p. 306. doi: 10.1016/j.actamat.2018.12.038
      [27]
      G.Y. Mi, Y. Xiang, C.M. Wang, L.D. Xiong, and Q.B. Ouyang, Microstructure and mechanical properties of SiCp/Al composite fabricated by concurrent wire-powder feeding laser deposition, J. Mater. Res. Technol., 22(2023), p. 66. doi: 10.1016/j.jmrt.2022.11.112
      [28]
      F.Q. Li, Z.Z. Gao, L.Q. Li, and Y.B. Chen, Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition, Opt. Laser Technol., 77(2016), p. 134. doi: 10.1016/j.optlastec.2015.09.018
      [29]
      F. Wang, J. Mei, and X.H. Wu, Compositionally graded Ti6Al4V+TiC made by direct laser fabrication using powder and wire, Mater. Des., 28(2007), No. 7, p. 2040. doi: 10.1016/j.matdes.2006.06.010
      [30]
      Y. Zhou and F.D. Ning, A feasibility study on directed energy deposition of SS 316L with coaxial wire-powder feeding, Manuf. Lett., 33(2022), p. 686. doi: 10.1016/j.mfglet.2022.07.085
      [31]
      W.U.H. Syed, A.J. Pinkerton, and L. Li, Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping, Appl. Surf. Sci., 252(2006), No. 13, p. 4803. doi: 10.1016/j.apsusc.2005.08.118
      [32]
      H.S. Lee, J.H. Yoon, C.H. Park, Y.G. Ko, D.H. Shin, and C.S. Lee, A study on diffusion bonding of superplastic Ti–6Al–4V ELI grade, J. Mater. Process. Technol., 187-188(2007), p. 526. doi: 10.1016/j.jmatprotec.2006.11.215
      [33]
      S. Sui, Y. Chew, F. Weng, C.L. Tan, Z.L. Du, and G.J. Bi, Achieving grain refinement and ultrahigh yield strength in laser aided additive manufacturing of Ti–6Al–4V alloy by trace Ni addition, Virtual Phys. Prototyp., 16(2021), No. 4, p. 417. doi: 10.1080/17452759.2021.1949091
      [34]
      L.T. Liu, C.Y. Chen, R.X. Zhao, et al. , In-situ nitrogen strengthening of selective laser melted Ti6Al4V with superior mechanical performance, Addit. Manuf., 46(2021), art. No. 102142.
      [35]
      X.P. Tan, Y. Kok, W.Q. Toh, et al., Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti–6Al–4V, Sci. Rep., 6(2016), art. No. 26039. doi: 10.1038/srep26039
      [36]
      A. Zafari, M.R. Barati, and K. Xia, Controlling martensitic decomposition during selective laser melting to achieve best ductility in high strength Ti–6Al–4V, Mater. Sci. Eng. A, 744(2019), p. 445. doi: 10.1016/j.msea.2018.12.047
      [37]
      R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th ed., Wiley, New Jersey, 2012.
      [38]
      T. Song, T. Dong, S.L. Lu, et al., Simulation-informed laser metal powder deposition of Ti–6Al–4V with ultrafine α–β lamellar structures for desired tensile properties, Addit. Manuf., 46(2021), art. No. 102139.
      [39]
      S.C. Wang, M. Aindow, and M.J. Starink, Effect of self-accommodation on α/α boundary populations in pure titanium, Acta Mater., 51(2003), No. 9, p. 2485. doi: 10.1016/S1359-6454(03)00035-1
      [40]
      S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Song, M. Brandt, and M. Qian, Variant selection in additively manufactured alpha-beta titanium alloys, J. Mater. Sci. Technol., 113(2022), p. 14. doi: 10.1016/j.jmst.2021.10.021
      [41]
      S.L. Lu, J.H. Wang, Y.Y. Sun, T. Song, and M. Qian, Identification of unusual large zones of Category I triple-alpha-variant clusters in additively manufactured Ti–4Al–2V alloy, Scripta Mater., 212(2022), art. No. 114578. doi: 10.1016/j.scriptamat.2022.114578
      [42]
      J.K. Ma, Y.S. Zhang, J.J. Li, Z.J. Wang, and J.C. Wang, Variant selection within one β grain in laser solid formed Ti–6Al–4V alloys, Mater. Charact., 185(2022), art. No. 111744. doi: 10.1016/j.matchar.2022.111744
      [43]
      H. Beladi, Q. Chao, and G.S. Rohrer, Variant selection and intervariant crystallographic planes distribution in martensite in a Ti–6Al–4V alloy, Acta Mater., 80(2014), p. 478. doi: 10.1016/j.actamat.2014.06.064
      [44]
      A. Carrozza, A. Aversa, F. Mazzucato, et al., An investigation on the effect of different multi-step heat treatments on the microstructure, texture and mechanical properties of the DED-produced Ti–6Al–4V alloy, Mater. Charact., 189(2022), art. No. 111958. doi: 10.1016/j.matchar.2022.111958
      [45]
      Z. Zhao, J. Chen, H. Tan, J.G. Tang, and X. Lin, In situ tailoring microstructure in laser solid formed titanium alloy for superior fatigue crack growth resistance, Scripta Mater., 174(2020), p. 53. doi: 10.1016/j.scriptamat.2019.08.028
      [46]
      A. Zafari and K. Xia, High Ductility in a fully martensitic microstructure: A paradox in a Ti alloy produced by selective laser melting, Mater. Res. Lett., 6(2018), No. 11, p. 627. doi: 10.1080/21663831.2018.1525773
      [47]
      J.L. Su, X.K. Ji, J. Liu, et al., Revealing the decomposition mechanisms of dislocations and metastable α′ phase and their effects on mechanical properties in a Ti–6Al–4V alloy, J. Mater. Sci. Technol., 107(2022), p. 136. doi: 10.1016/j.jmst.2021.07.048
      [48]
      J. Haubrich, J. Gussone, P. Barriobero-Vila, et al., The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti–6Al–4V, Acta Mater., 167(2019), p. 136. doi: 10.1016/j.actamat.2019.01.039
      [49]
      W. Xu, M. Brandt, S. Sun, et al., Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Mater., 85(2015), p. 74. doi: 10.1016/j.actamat.2014.11.028
      [50]
      C. de Formanoir, G. Martin, F. Prima, et al., Micromechanical behavior and thermal stability of a dual-phase α+α′ titanium alloy produced by additive manufacturing, Acta Mater., 162(2019), p. 149. doi: 10.1016/j.actamat.2018.09.050
      [51]
      M.H. Farshidianfar, A. Khajepour, and A.P. Gerlich, Effect of real-time cooling rate on microstructure in laser additive manufacturing, J. Mater. Process. Technol., 231(2016), p. 468. doi: 10.1016/j.jmatprotec.2016.01.017
      [52]
      C.L. Tan, R.S. Li, J.L. Su, et al., Review on field assisted metal additive manufacturing, Int. J. Mach. Tools Manuf., 189(2023), art. No. 104032. doi: 10.1016/j.ijmachtools.2023.104032

    Catalog


    • /

      返回文章
      返回