留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  162
  • HTML全文浏览量:  69
  • PDF下载量:  10
  • 被引次数: 0
Konghu Tian, Hang Yang, Chao Zhang, Ruiwen Shu, Qun Shao, Xiaowei Liu, and Kaipeng Gao, Fabrication of flake-like NiCo2O4/reduced graphene oxide/melamine-derived carbon foam as an excellent microwave absorber, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3008-3
Cite this article as:
Konghu Tian, Hang Yang, Chao Zhang, Ruiwen Shu, Qun Shao, Xiaowei Liu, and Kaipeng Gao, Fabrication of flake-like NiCo2O4/reduced graphene oxide/melamine-derived carbon foam as an excellent microwave absorber, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3008-3
引用本文 PDF XML SpringerLink
研究论文

构建片状NiCo2O4/还原氧化石墨烯/三聚氰胺碳泡沫作为性能优异的微波吸收剂


  • 通讯作者:

    田恐虎    E-mail: tkhsuper@163.com

    张超    E-mail: chaozhang@mail.bnu.edu.cn

    疏瑞文    E-mail: austshuruiwen@126.com

文章亮点

  • (1) 采用溶剂热法和热解法制备了FNC/RGO/MDCF复合材料。
  • (2) 通过成分优化和结构设计制备出片状NiCo2O4
  • (3) FNC/RGO/MDCF的最佳RLmin为−66.44 dB,厚度为2.29 mm。
  • (4) 在低厚度范围内(1.00–2.80mm),其EAB覆盖整个X和Ku波段。
  • 具有三维结构的碳基泡沫可以作为合理设计和可控制备金属氧化物/碳基复合微波吸收材料的轻量化模板,通过科学选材和特殊结构设计,利用组分间的协同效应可以提高微波吸收材料(MAMs)的综合吸波性能。在本研究中,通过溶剂热和高温热解相结合,成功制备了片状钴酸镍/还原氧化石墨烯/三聚氰胺衍生碳泡沫(FNC/RGO/MDCF)。通过对FNC/RGO/MDCF复合材料的形貌和结构分析,RGO在MDCF骨架中分布均匀,为FNC在其表面的负载生长提供了有效支撑。对该复合材料进行微波吸收性能分析,发现样品S3(S3为溶剂热法制备16 h的FNC/RGO/MDCF复合材料)在厚度为2.29 mm处的最佳反射损耗(RLmin)为−66.44 dB。当厚度在1.50 mm时,最佳有效吸收带宽(EAB)为3.84 GHz。对FNC/RGO/MDCF的吸收机理分析表明,FNC/RGO/MDCF优异的吸波性能主要是由传导损耗、多次反射、散射、界面极化和偶极极化共同作用的结果。
  • Research Article

    Fabrication of flake-like NiCo2O4/reduced graphene oxide/melamine-derived carbon foam as an excellent microwave absorber

    + Author Affiliations
    • Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and controllable preparation of metal oxide/carbon-based composite microwave absorption materials. In this study, a flake-like nickel cobaltate/reduced graphene oxide/melamine-derived carbon foam (FNC/RGO/MDCF) was successfully fabricated through a combination of solvothermal treatment and high-temperature pyrolysis. Results indicated that RGO was evenly distributed in the MDCF skeleton, providing effective support for the load growth of FNC on its surface. Sample S3, the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h, exhibited a minimum reflection loss (RLmin) of −66.44 dB at a thickness of 2.29 mm. When the thickness was reduced to 1.50 mm, the optimal effective absorption bandwidth was 3.84 GHz. Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss, multiple reflection, scattering, interface polarization, and dipole polarization.
    • loading
    • [1]
      M. Green and X.B. Chen, Recent progress of nanomaterials for microwave absorption, J. Materiomics, 5(2019), No. 4, p. 503. doi: 10.1016/j.jmat.2019.07.003
      [2]
      W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liotta, and H.J. Wu, High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber, J. Colloid Interface Sci., 586(2021), p. 457. doi: 10.1016/j.jcis.2020.10.109
      [3]
      X.B. Xie, H.S. Wang, H. Kimura, C. Ni, W. Du, and G.L. Wu, NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2274. doi: 10.1007/s12613-024-2880-1
      [4]
      Y.H. Cheng, D. Lan, Z.R. Jia, et al., MOF derivatives anchored to multichannel hollow carbon fibers with gradient structures for corrosion resistance and efficient electromagnetic wave absorption, J. Mater. Sci. Technol., 216(2025), p. 150. doi: 10.1016/j.jmst.2024.08.004
      [5]
      W.D. Zhang, Y. Zheng, X. Zhang, et al., Synthesis and mechanism investigation of wide-bandwidth Ni@MnO2 NS foam microwave absorbent, J. Alloys Compd., 792(2019), p. 945. doi: 10.1016/j.jallcom.2019.04.093
      [6]
      X.Q. Yang, H.H. Wang, J. Chen, et al., Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 812. doi: 10.1007/s12613-023-2768-5
      [7]
      Y. Zhang, D. Lan, T.Q. Hou, et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2T X MXene fabric with ultra-wide absorption band, Carbon, 230(2024), art. No. 119594. doi: 10.1016/j.carbon.2024.119594
      [8]
      H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, and Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption, Carbon, 142(2019), p. 245. doi: 10.1016/j.carbon.2018.10.027
      [9]
      Z.C. Liu, F. Pan, B.W. Deng, Z. Xiang, and W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption, Carbon, 174(2021), p. 59. doi: 10.1016/j.carbon.2020.12.019
      [10]
      X. Li, L.Z. Yu, Z. Xiang, et al., Enhanced electromagnetic wave absorption of olive-like Fe3O4/Fe@C core-shell nanocomposite in Ku band, J. Alloys Compd., 821(2020), art. No. 153275. doi: 10.1016/j.jallcom.2019.153275
      [11]
      B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
      [12]
      L.L. Xing, H.R. Cheng, Y. Li, Q. Chen, and X.H. Liu, Simultaneous manipulation of constituent and structure toward MOFs-derived hollow Co3O4/Co/NC@MXene microspheres via pyrolysis strategy for high-performance microwave absorption, Chem. Eng. J., 487(2024), art. No. 150729. doi: 10.1016/j.cej.2024.150729
      [13]
      X.G. Su, J. Wang, X.X. Zhang, et al., Design of controlled-morphology NiCo2O4 with tunable and excellent microwave absorption performance, Ceram. Int., 46(2020), No. 6, p. 7833. doi: 10.1016/j.ceramint.2019.12.002
      [14]
      H. Zhang, Q.J. Ding, G. Zhao, and J.F. Song, Synthesis of NiCo2O4/CF composites with heterogeneous interfaces as excellent microwave absorbers, Mater. Today Commun., 37(2023), art. No. 106919. doi: 10.1016/j.mtcomm.2023.106919
      [15]
      J.L. Fan, W.J. Xing, Y. Huang, et al., Facile fabrication hierarchical urchin-like C/NiCo2O4/ZnO composites as excellent microwave absorbers, J. Alloys Compd., 821(2020), art. No. 153491. doi: 10.1016/j.jallcom.2019.153491
      [16]
      X. Ding and J.G. Wang, Structural design, preparation and characterization of an effective microwave absorbent: rGO–NiCo2O4 nanochains, Synth. Met., 294(2023), art. No. 117313. doi: 10.1016/j.synthmet.2023.117313
      [17]
      C. Han, M. Zhang, W.Q. Cao, and M.S. Cao, Electrospinning and in situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption, Carbon, 171(2021), p. 953. doi: 10.1016/j.carbon.2020.09.067
      [18]
      Z.C. Hu, M.H. Jiang, Y.J. Zou, et al., MoS2-decorated carbonized melamine foam/reduced graphene oxide network for constructing polyethylene-glycol-based multifunctional phase change materials toward multiple energy harvesting and microwave absorbing applications, Chem. Eng. J., 461(2023), art. No. 141923. doi: 10.1016/j.cej.2023.141923
      [19]
      Z.J. Li, L.M. Zhang, and H.J. Wu, A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption, Small, 20(2024), No. 11, art. No. 2305120. doi: 10.1002/smll.202305120
      [20]
      Y. Li, S. Li, T. Zhang, L.L. Shi, S.T. Liu, and Y. Zhao, 3D hierarchical Co3O4/Reduced graphene oxide/melamine derived carbon foam as a comprehensive microwave absorbing material, J. Alloys Compd., 792(2019), p. 424. doi: 10.1016/j.jallcom.2019.03.359
      [21]
      H.R. Cheng, Y.M. Pan, W. Li, et al., Facile design of multifunctional melamine foam with Ni-anchored reduced graphene oxide/MXene as highly efficient microwave absorber, Nano Today, 52(2023), art. No. 101958. doi: 10.1016/j.nantod.2023.101958
      [22]
      W.L. Ma, X.Y. Liu, Z.R. Qiu, Z.H. Cai, J.L. Diao, and Y. Huang, Hydrophobic and flame-retardant multifunctional foam for enhanced thermal insulation and broadband microwave absorption via a triple-continuous network of RGO/MWCNT-melamine composite, Carbon, 196(2022), p. 913. doi: 10.1016/j.carbon.2022.05.060
      [23]
      R.W. Shu, L.J. Nie, Z.W. Zhao, and X.H. Yang, Synthesis of nitrogen-doped reduced graphene oxide/magnesium ferrite/polyaniline composite aerogel as a lightweight, broadband and efficient microwave absorber, J. Mater. Sci. Technol., 175(2024), p. 115. doi: 10.1016/j.jmst.2023.08.015
      [24]
      S.S. Wang, Y. Zhao, M.M. Gao, et al., Green synthesis of porous cocoon-like rGO for enhanced microwave-absorbing performances, ACS Appl. Mater. Interfaces, 10(2018), No. 49, p. 42865. doi: 10.1021/acsami.8b15416
      [25]
      Z.X. Wang, Q. Yu, W.C. Nie, and P. Chen, Preparation and microwave absorption properties of Ni/rGO/EP composite foam, J. Mater. Res., 35(2020), No. 16, p. 2106. doi: 10.1557/jmr.2020.136
      [26]
      C. Fu, D.W. He, Y.S. Wang, and X. Zhao, Enhanced microwave absorption performance of RGO-modified Co@C nanorods, Synth. Met., 257(2019), art. No. 116187. doi: 10.1016/j.synthmet.2019.116187
      [27]
      L.Q. Yang, Y. Wang, Z. Lu, R.R. Cheng, N. Wang, and Y.F. Li, Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption, Carbon, 205(2023), p. 411. doi: 10.1016/j.carbon.2023.01.057
      [28]
      L. Quan, F.X. Qin, D. Estevez, H. Wang, and H.X. Peng, Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber, Carbon, 125(2017), p. 630. doi: 10.1016/j.carbon.2017.09.101
      [29]
      B. Wei, M.Q. Wang, Z.J. Yao, et al., Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers, Carbon, 191(2022), p. 486. doi: 10.1016/j.carbon.2022.02.020
      [30]
      X.W. Liu, K.H. Tian, Z.H. Chen, et al., Synthesis of NiCo-BNSA/RGO/MDCF with three-dimensional porous network structure as an excellent microwave absorber, J. Colloid Interface Sci., 650(2023), p. 396. doi: 10.1016/j.jcis.2023.07.005
      [31]
      X.G. Su, J. Wang, X.X. Zhang, et al., Construction of sandwich-like NiCo2O4/Graphite nanosheets/NiCo2O4 heterostructures for a tunable microwave absorber, Ceram. Int., 46(2020), No. 11, p. 19293. doi: 10.1016/j.ceramint.2020.04.269
      [32]
      W.J. Yu and G.F. Shao, Morphology engineering of defective graphene for microwave absorption, J. Colloid Interface Sci., 640(2023), p. 680. doi: 10.1016/j.jcis.2023.02.140
      [33]
      Z.Z. Guo, P.G. Ren, F.D. Zhang, et al., Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption, J. Colloid Interface Sci., 610(2022), p. 1077. doi: 10.1016/j.jcis.2021.11.165
      [34]
      F.Y. Wang, Y.L. Liu, H.H. Zhao, et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics, Chem. Eng. J., 450(2022), art. No. 138160. doi: 10.1016/j.cej.2022.138160
      [35]
      Y. Wu, K.H. Tian, R.W. Shu, et al., Constructing interpenetrating structured NiCo2O4/HCNT composites with heterogeneous interfaces as low-thickness microwave absorber, J. Colloid Interface Sci., 616(2022), p. 44. doi: 10.1016/j.jcis.2022.02.027
      [36]
      S.S. Li, W.J. Mo, Y. Liu, and Q. Wang, Constructing 3D Tent-Like frameworks in melamine hybrid foam for superior microwave absorption and thermal insulation, Chem. Eng. J., 454(2023), art. No. 140133. doi: 10.1016/j.cej.2022.140133
      [37]
      Y.C. He, Y.Q. Wang, L.G. Ren, et al., Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption, J. Colloid Interface Sci., 627(2022), p. 102. doi: 10.1016/j.jcis.2022.07.047
      [38]
      F. Wu, P. Liu, J.Q. Wang, et al., Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties, J. Colloid Interface Sci., 577(2020), p. 242. doi: 10.1016/j.jcis.2020.05.058
      [39]
      Q. Shi, Y. Zhao, M.Y. Li, B.G. Li, and Z.T. Hu, 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties, J. Colloid Interface Sci., 641(2023), p. 449. doi: 10.1016/j.jcis.2023.03.062
      [40]
      S. Wei, X.X. Wang, B.Q. Zhang, et al., Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance, Chem. Eng. J., 314(2017), p. 477. doi: 10.1016/j.cej.2016.12.005
      [41]
      M. Wu, L. Rao, Z.Y. Ji, et al., 3D lightweight interconnected melamine foam modified with hollow CoFe2O4/MXene toward efficient microwave absorption, ACS Appl. Mater. Interfaces, 16(2024), No. 7, p. 9169. doi: 10.1021/acsami.3c17790

    Catalog


    • /

      返回文章
      返回