Cite this article as: |
Chaoyi Li, Minghao Su, Tianyi Hou, Yuhe Shi, Junrong Huang, Jing Qing, Wenxin Niu, Yinghe Zhang, Ling zhang, and Hengzhi You, Two new amino acid derivatives as green corrosion inhibitors against Q235 steel in HCl solution: Experimental and theoretical investigations, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3011-8 |
Amino acids have emerged as promising green alternatives to replace toxic inhibitors in corrosion protection applications. In this study, we present a one-step synthetic approach for the functionalization of methionine and cysteine using p-tert-butylbenzoic acid (P-Meth and P-Cys), which have super protective performance to metals against corrosions. The corrosion rates of Q235 steel in 1 M HCl were reduced from 4.542 to 0.202 and 0.312 mg·h-1cm-2 in the presence of 100 mg·h-1 P-Meth and P-Cys, respectively. The surface structures of Q235 steel were not broken after 12 h in 1 M HCl mediums. The charge transfer resistances of corrosion reactions were enhanced by 12 and 9 times in the presence of P-Meth and P-Cys, respectively. Both of P-Meth and P-Cys were adsorbed onto Q235 steel by chemical actions generally, accompanying with a little physical action. Molecular dynamic simulations demonstrate that P-Meth has higher binding energies onto Q235 steel than P-Cys. The study is significant for the corrosion protections of metals with green and environmental-friend methods.