Cite this article as: |
Qicheng Feng, Yingchao Zhang, Ga Zhang, Guang Han, and Wenjuan Zhao, An innovation scheme for hemimorphite flotation: Synergistic activation performance and mechanism, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3016-3 |
Hemimorphite exhibits poor floatability during the sulfidization flotation process. The addition of Cu2+ and Pb2+ enhances the reaction activity of the hemimorphite surface and subsequently improves its flotation behavior. In this study, the adsorption mechanisms of Cu2+ and Pb2+ onto a hemimorphite surface were investigated. We examined the interaction mechanism of xanthate with the hemimorphite surface and observed changes in the mineral surface hydrophobicity after synergistic activation by with Cu2+ and Pb2+. Microflotation tests indicated that the individual activation of Cu2+ or Pb2+ on the hemimorphite surfaces increased the flotation recovery, with Pb2+ showing greater effectiveness than Cu2+. The synergistic activation with Cu2+ and Pb2+ significantly boosted the flotation recovery of hemimorphite. Both Cu2+ and Pb2+ can be adsorbed onto hemimorphite surfaces, forming an adsorption layer containing Cu or Pb components. Following synergistic activation with Cu2+ and Pb2+, the activated layer on the hemimorphite surfaces consisted of both Cu and Pb components, which contained a higher content of the active product than when activated by Cu2+ or Pb2+. Additionally, the adsorption of xanthate on the hemimorphite surfaces increased noticeably after synergistic activation with Cu2+ and Pb2+, suggesting a more vigorous reaction between xanthate and the activated minerals. Therefore, synergistic activation with Cu2+ and Pb2+ effectively increased the content of active products on the hemimorphite surfaces, enhanced mineral surface reactivity, facilitated collector adsorption, and improved mineral surface hydrophobicity.