留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
数据统计

分享

计量
  • 文章访问数:  58
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
Muyang Huang, Shenxu Bao, Yimin Zhang, Mengke Li, Chong Deng, and Wenhan Chen, Optimization and mechanism analysis of multi-solid wastes-based geopolymer using response surface methodology, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3072-8
Cite this article as:
Muyang Huang, Shenxu Bao, Yimin Zhang, Mengke Li, Chong Deng, and Wenhan Chen, Optimization and mechanism analysis of multi-solid wastes-based geopolymer using response surface methodology, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-3072-8
引用本文 PDF XML SpringerLink
  • Research Article

    Optimization and mechanism analysis of multi-solid wastes-based geopolymer using response surface methodology

    + Author Affiliations
    • The escalating production of industrial solid waste, in conjunction with the dwindling availability of natural resources, has intensified focus on waste recycling. However, the heterogeneity and complexity of waste pose significant challenges to the determination of process parameters. In this study, burnt coal cinder (BCC), granite powder (GP), and high-calcium fly ash (Class-C FA) was as raw materials and the response surface methodology (RSM) and single-factor experiments were applied to optimize the process parameters for geopolymer preparation. The optimized precursor powder composition was determined to be a mass ratio of 1.6: 0.9: 7.3 for BCC, GP, and Class-C FA. The NaOH-precursor powder ratio and liquid-solid ratio were adjusted to 0.084 and 0.222, respectively. The curing condition was set at 80°C for 24 h. The resulting 28-d aged multi-solid wastes-based geopolymer exhibited high compressive strength of 61.34 MPa. The microstructure, mineral phase, and atomic bonding of geopolymers were investigated using XRD, TA, FTIR, and SEM-EDS techniques. The findings indicate that the compressive strength of geopolymer is most significantly influenced by the Class-C FA, followed by BCC. Furthermore, minor addition of GP can optimize structural density of geopolymer. The Ca present in the Class-C FA participates in the geopolymerization, forming hybrid N-(C)-A-S-H gel. RSM optimization facilitates the synergistic utilization of multi-solid wastes, ensuring an even distribution of gel and filler. This research establishes a theoretical framework for optimizing the preparation parameters of multi-solid wastes-based geopolymer and its subsequent applications. It holds significant scientific implications for the circular economy, resource transformation, and environmental conservation.

    • loading

    Catalog


    • /

      返回文章
      返回