Plain carbon steel Q215 honeycomb sandwich panels were manufactured by brazing in a vacuum furnace. Their characteristic parameters, including equivalent density, equivalent elastic modulus, and equivalent compressive strength along out-of-plane (z-direction) and in-plane (x-and y-directions), were derived theoretically and then determined experimentally by an 810 material test system. On the basis of the experimental data, the compressive stress-strain curves were given. The results indicate that the measurements of equivalent Young's modulus and initial compressive strength are in good agreement with calculations, and that the maximum compressive strain near to solid can be up to 0.5-0.6 along out-of-plane, 0.6-0.7 along in-plane. The strength-to-density ratio of plain carbon steel honeycomb panels is near to those of Al alloy hexagonal-honeycomb and 304L stainless steel square-honeycomb, but the compressive peak strength is greater than that of Al alloy hexagonal-honeycomb.
Plain carbon steel Q215 honeycomb sandwich panels were manufactured by brazing in a vacuum furnace. Their characteristic parameters, including equivalent density, equivalent elastic modulus, and equivalent compressive strength along out-of-plane (z-direction) and in-plane (x-and y-directions), were derived theoretically and then determined experimentally by an 810 material test system. On the basis of the experimental data, the compressive stress-strain curves were given. The results indicate that the measurements of equivalent Young's modulus and initial compressive strength are in good agreement with calculations, and that the maximum compressive strain near to solid can be up to 0.5-0.6 along out-of-plane, 0.6-0.7 along in-plane. The strength-to-density ratio of plain carbon steel honeycomb panels is near to those of Al alloy hexagonal-honeycomb and 304L stainless steel square-honeycomb, but the compressive peak strength is greater than that of Al alloy hexagonal-honeycomb.