Jiangbo Cheng, Binshi Xu, Xiubing Liang, Yixiong Wu, and Zhengjun Liu, Effect of electromagnetic stirring on the microstructure and wear behavior of iron-based composite coatings, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, pp. 451-456. https://doi.org/10.1016/S1005-8850(08)60085-7
Cite this article as:
Jiangbo Cheng, Binshi Xu, Xiubing Liang, Yixiong Wu, and Zhengjun Liu, Effect of electromagnetic stirring on the microstructure and wear behavior of iron-based composite coatings, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, pp. 451-456. https://doi.org/10.1016/S1005-8850(08)60085-7
Jiangbo Cheng, Binshi Xu, Xiubing Liang, Yixiong Wu, and Zhengjun Liu, Effect of electromagnetic stirring on the microstructure and wear behavior of iron-based composite coatings, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, pp. 451-456. https://doi.org/10.1016/S1005-8850(08)60085-7
Citation:
Jiangbo Cheng, Binshi Xu, Xiubing Liang, Yixiong Wu, and Zhengjun Liu, Effect of electromagnetic stirring on the microstructure and wear behavior of iron-based composite coatings, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, pp. 451-456. https://doi.org/10.1016/S1005-8850(08)60085-7
The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by applying different magnetic field currents. The microstructure and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and wet sand rubber wheel abrasion tester. The experimental results showed that the microstructure of the coatings was mainly the γ-Fe matrix and (Cr, Fe)7C3 carbide reinforced phase. The coatings were metallurgically bonded to the substrate. With increasing magnetic field current, the amount of the block-like (Cr, Fe)TC3 carbide reinforced phase increased at first, reached a local maximum, and then decreased sharply. When the magnetic field current reached 3 A, the block-like (Cr, Fe)TC3 carbides with high volume fraction were uniformly distributed in the matrix and the coating displayed a high microhardness and an excellent wear resistance under the wear test condition.
The effect of electromagnetic stirring on the microstructure and wear behavior of coatings has been investigated. A series of iron-based coatings were fabricated by the plasma-transferred arc cladding process by applying different magnetic field currents. The microstructure and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and wet sand rubber wheel abrasion tester. The experimental results showed that the microstructure of the coatings was mainly the γ-Fe matrix and (Cr, Fe)7C3 carbide reinforced phase. The coatings were metallurgically bonded to the substrate. With increasing magnetic field current, the amount of the block-like (Cr, Fe)TC3 carbide reinforced phase increased at first, reached a local maximum, and then decreased sharply. When the magnetic field current reached 3 A, the block-like (Cr, Fe)TC3 carbides with high volume fraction were uniformly distributed in the matrix and the coating displayed a high microhardness and an excellent wear resistance under the wear test condition.