留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 16 Issue 1
Feb.  2009
数据统计

分享

计量
  • 文章访问数:  258
  • HTML全文浏览量:  78
  • PDF下载量:  13
  • 被引次数: 0
Yun Xue, Ye Chen, Mi-lin Zhang,  and Yong-de Yan, Preparation and characterization of LiAlxMn2-xO4 for a supercapacitor in aqueous electrolyte, Int. J. Miner. Metall. Mater., 16(2009), No. 1, pp. 112-118. https://doi.org/10.1016/S1674-4799(09)60019-4
Cite this article as:
Yun Xue, Ye Chen, Mi-lin Zhang,  and Yong-de Yan, Preparation and characterization of LiAlxMn2-xO4 for a supercapacitor in aqueous electrolyte, Int. J. Miner. Metall. Mater., 16(2009), No. 1, pp. 112-118. https://doi.org/10.1016/S1674-4799(09)60019-4
引用本文 PDF XML SpringerLink
Materials

Preparation and characterization of LiAlxMn2-xO4 for a supercapacitor in aqueous electrolyte

  • 通讯作者:

    Mi-lin Zhang    E-mail: zhangmilin2007@sina.com

  • LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L-1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g-1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles.
  • Materials

    Preparation and characterization of LiAlxMn2-xO4 for a supercapacitor in aqueous electrolyte

    + Author Affiliations
    • LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L-1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g-1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles.
    • loading

    Catalog


    • /

      返回文章
      返回