留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 7 Issue 2
Jun.  2000
数据统计

分享

计量
  • 文章访问数:  275
  • HTML全文浏览量:  47
  • PDF下载量:  6
  • 被引次数: 0
Zhen Ji, Zhhong Xiao, Xuqing Liu, Zhaozeng Ma, and Zongsen Yu, Pb(Mg1/3Nb2/3)O3-PbTiO3-BaTiO3 Complex Perovskite Ferroelectric Ceramics with High Dielectric Constant and Low Firing Temperature, J. Univ. Sci. Technol. Beijing, 7(2000), No. 2, pp. 115-117.
Cite this article as:
Zhen Ji, Zhhong Xiao, Xuqing Liu, Zhaozeng Ma, and Zongsen Yu, Pb(Mg1/3Nb2/3)O3-PbTiO3-BaTiO3 Complex Perovskite Ferroelectric Ceramics with High Dielectric Constant and Low Firing Temperature, J. Univ. Sci. Technol. Beijing, 7(2000), No. 2, pp. 115-117.
引用本文 PDF XML SpringerLink
Materials

Pb(Mg1/3Nb2/3)O3-PbTiO3-BaTiO3 Complex Perovskite Ferroelectric Ceramics with High Dielectric Constant and Low Firing Temperature

  • The effects of different firing temperatures on the stability of perovskite phase, grain size, and dielectric properties were investigated by XRD, TEM, SEM and dielectric measurements. The dielectric ceramics of Pb(Mg1/3Nb2/3)O3-PbTiO3-BaTiO3 system were obtained by chemical coprecipitation in water. The ceramics have higher dielectric constant (7003-9714), lower firing temperature(950-1150℃), quite uniform microstructure with grain size less than 2.5 mp, and lower temperature coefficients of capacitance. As a result, it was confirmed that the simple and low cost chemical route used namely coprecipitation in water is a desired method for preparing high property dielectric materials applicable to multilayer capacitors.
  • Materials

    Pb(Mg1/3Nb2/3)O3-PbTiO3-BaTiO3 Complex Perovskite Ferroelectric Ceramics with High Dielectric Constant and Low Firing Temperature

    + Author Affiliations
    • The effects of different firing temperatures on the stability of perovskite phase, grain size, and dielectric properties were investigated by XRD, TEM, SEM and dielectric measurements. The dielectric ceramics of Pb(Mg1/3Nb2/3)O3-PbTiO3-BaTiO3 system were obtained by chemical coprecipitation in water. The ceramics have higher dielectric constant (7003-9714), lower firing temperature(950-1150℃), quite uniform microstructure with grain size less than 2.5 mp, and lower temperature coefficients of capacitance. As a result, it was confirmed that the simple and low cost chemical route used namely coprecipitation in water is a desired method for preparing high property dielectric materials applicable to multilayer capacitors.
    • loading

    Catalog


    • /

      返回文章
      返回