留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 8 Issue 4
Dec.  2001
数据统计

分享

计量
  • 文章访问数:  217
  • HTML全文浏览量:  65
  • PDF下载量:  13
  • 被引次数: 0
Qikai L, Yue Zhang, Mark Hoffman,  and Wuyang Chu, Molecular Dynamics Simulation of Dealloyed Layer-induced Tensile Stress in Cu3Au, J. Univ. Sci. Technol. Beijing, 8(2001), No. 4, pp. 295-298.
Cite this article as:
Qikai L, Yue Zhang, Mark Hoffman,  and Wuyang Chu, Molecular Dynamics Simulation of Dealloyed Layer-induced Tensile Stress in Cu3Au, J. Univ. Sci. Technol. Beijing, 8(2001), No. 4, pp. 295-298.
引用本文 PDF XML SpringerLink
Materials

Molecular Dynamics Simulation of Dealloyed Layer-induced Tensile Stress in Cu3Au

  • During stress corrosion cracking of Cu3Au alloy, there is a dealloyed layer on its surface because of preferential dissolution of Cu, and there is a linear distribution of Cu vacancy concentration in the dealloyed layer. Molecular dynamics simulation has been done on the three-dimensional crystal (about 148 000 atoms) by employing the embedded-atom method (EAM) potential. Simulation shows that Cu3Au crystal in which there is a dealloyed layer on one surface and one end is fixed will be deflected after relaxing for a long time because of a tensile stress generated at or near the dealloyed layer interface. The deflection and then the tensile stress increase with increasing the depth of dealloyed layer and the vacancy concentration in the dealloyed layer.
  • Materials

    Molecular Dynamics Simulation of Dealloyed Layer-induced Tensile Stress in Cu3Au

    + Author Affiliations
    • During stress corrosion cracking of Cu3Au alloy, there is a dealloyed layer on its surface because of preferential dissolution of Cu, and there is a linear distribution of Cu vacancy concentration in the dealloyed layer. Molecular dynamics simulation has been done on the three-dimensional crystal (about 148 000 atoms) by employing the embedded-atom method (EAM) potential. Simulation shows that Cu3Au crystal in which there is a dealloyed layer on one surface and one end is fixed will be deflected after relaxing for a long time because of a tensile stress generated at or near the dealloyed layer interface. The deflection and then the tensile stress increase with increasing the depth of dealloyed layer and the vacancy concentration in the dealloyed layer.
    • loading

    Catalog


    • /

      返回文章
      返回