The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-firing at 1750°C for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated Mg-PSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4 μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarkably, probably due to the lower electronic conductivity of Y2O,-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2 (9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measurement. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this improvement.
The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-firing at 1750°C for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated Mg-PSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4 μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarkably, probably due to the lower electronic conductivity of Y2O,-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2 (9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measurement. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this improvement.