The formation mechanism of stoichiometry Ti5Si3 by mechanical alloying (MA) from elemental powders has been investigated. The results of XRD and SEM analyses of the powder show that Ti5Si3 can be synthesized by MA in a planetary mill with two different formation mechanisms. Ti5Si3 was formed gradually with the mechanical collusion reaction (MCR) mechanism under a lower impact energy, and the Ti5Si3 was formed abruptly with the self-propagating high-temperature synthesis (SHS) formation mechanism under a higher impact energy.
The formation mechanism of stoichiometry Ti5Si3 by mechanical alloying (MA) from elemental powders has been investigated. The results of XRD and SEM analyses of the powder show that Ti5Si3 can be synthesized by MA in a planetary mill with two different formation mechanisms. Ti5Si3 was formed gradually with the mechanical collusion reaction (MCR) mechanism under a lower impact energy, and the Ti5Si3 was formed abruptly with the self-propagating high-temperature synthesis (SHS) formation mechanism under a higher impact energy.