Based on the calculating model of metallic melts involving eutectic, the calculating equations of mixing thermodynamic parameters for two phase metallic melts have been formulated in the light of those equations of homogeneous solutions. Irrespective as to whether the activity deviation relative to Raoultian behavior is positive or negative, or the deviation is symmetrical or unsymmetrical, the evaluated results not only agree well with experimental values, but also strictly obey the mass action law. This testifies that these equations can authentically reflect the structural reality and mixing thermodynamic characteristics of two-phase metallic melts. The calculating equations of mixing thermodynamic parameters for the model of two phase metallic melts offer two practical criteria (activity and mixing thermodynamic parameters) and one theoretical criterion (the mass action law).
Based on the calculating model of metallic melts involving eutectic, the calculating equations of mixing thermodynamic parameters for two phase metallic melts have been formulated in the light of those equations of homogeneous solutions. Irrespective as to whether the activity deviation relative to Raoultian behavior is positive or negative, or the deviation is symmetrical or unsymmetrical, the evaluated results not only agree well with experimental values, but also strictly obey the mass action law. This testifies that these equations can authentically reflect the structural reality and mixing thermodynamic characteristics of two-phase metallic melts. The calculating equations of mixing thermodynamic parameters for the model of two phase metallic melts offer two practical criteria (activity and mixing thermodynamic parameters) and one theoretical criterion (the mass action law).