State Key Laboratory for New Nonferrous Metal Materials, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Laboratory of Solid Lubrication, Lanzhou Institute of Chinese Academy of Sciences, Lanzhou 730000, China
Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5 mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size. The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.
State Key Laboratory for New Nonferrous Metal Materials, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Laboratory of Solid Lubrication, Lanzhou Institute of Chinese Academy of Sciences, Lanzhou 730000, China
Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5 mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size. The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.