Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China
中文摘要
An empirical equation of carbon solubility in Fe-Cr-C melts is regressed based on the experimental data from references. A calculating model of mass action concentrations for these melts is formulated on the basis of the coexistence theory of metallic melts involving compound formation, the phase diagram of Cr-C system as well as thermodynamic data of Fe-Cr-C melts. According to the model, the standard Gibbs free energies of formation of CrC and Cr3C2 are obtained. Satisfactory agreement between the calculated and measured values shows that the model can reflect the structural characteristics of Fe-Cr-C melts.
An empirical equation of carbon solubility in Fe-Cr-C melts is regressed based on the experimental data from references. A calculating model of mass action concentrations for these melts is formulated on the basis of the coexistence theory of metallic melts involving compound formation, the phase diagram of Cr-C system as well as thermodynamic data of Fe-Cr-C melts. According to the model, the standard Gibbs free energies of formation of CrC and Cr3C2 are obtained. Satisfactory agreement between the calculated and measured values shows that the model can reflect the structural characteristics of Fe-Cr-C melts.