2015 Vol. 22, No. 11
Display Method:
2015, vol. 22, no. 11, pp.
1121-1130.
https://doi.org/10.1007/s12613-015-1176-x
Abstract:
In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric acid solutions. The effect of six process variables, including the mass ratio of ferrous sulfate heptahydrate to pyrolusite, mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio, current density, leaching temperature, and leaching time, as well as their binary interactions, were modeled. The results revealed that the order of these factors with respect to their effects on the leaching efficiency were mass ratio of ferrous sulfate heptahydrate to pyrolusite > leaching time > mass ratio of sulfuric acid to pyrolusite > liquid-to-solid ratio > leaching temperature > current density. The optimum conditions were as follows: 1.10:1 mass ratio of ferrous sulfate heptahydrate to pyrolusite, 0.9:1 mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio of 0.7:1, current density of 947 A/m2, leaching time of 180 min, and leaching temperature of 73℃. Under these conditions, the predicted leaching efficiency for Mn was 94.1%; the obtained experimental result was 95.7%, which confirmed the validity of the model.
In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric acid solutions. The effect of six process variables, including the mass ratio of ferrous sulfate heptahydrate to pyrolusite, mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio, current density, leaching temperature, and leaching time, as well as their binary interactions, were modeled. The results revealed that the order of these factors with respect to their effects on the leaching efficiency were mass ratio of ferrous sulfate heptahydrate to pyrolusite > leaching time > mass ratio of sulfuric acid to pyrolusite > liquid-to-solid ratio > leaching temperature > current density. The optimum conditions were as follows: 1.10:1 mass ratio of ferrous sulfate heptahydrate to pyrolusite, 0.9:1 mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio of 0.7:1, current density of 947 A/m2, leaching time of 180 min, and leaching temperature of 73℃. Under these conditions, the predicted leaching efficiency for Mn was 94.1%; the obtained experimental result was 95.7%, which confirmed the validity of the model.
2015, vol. 22, no. 11, pp.
1131-1140.
https://doi.org/10.1007/s12613-015-1177-9
Abstract:
The dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method was investigated. The effects of the type of organic acid, acid concentration, leaching time, and leaching temperature on the lateritic nickel ore were examined. Organic acids were used individually prior to sequential leaching. Citric acid was more effective than the other two acids for the selective leaching of nickel and cobalt. An increase in the citric acid concentration negligibly affected the dissolution of the metals, whereas temperature exhibited a strong beneficial effect. Oxalic acid was determined to be the most appropriate organic acid for the second leaching step. After 8 h (4 h + 4 h) of leaching with organic acids (0.5 M citric + 0.5 M oxalic) in sequence at 90℃, 89.63% Ni, 82.89% Co, and 69.63% Fe were leached from the lateritic nickel ore. A sequential citric + oxalic acid leaching method could represent a viable alternative for the dissolution of metals from lateritic nickel ore.
The dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method was investigated. The effects of the type of organic acid, acid concentration, leaching time, and leaching temperature on the lateritic nickel ore were examined. Organic acids were used individually prior to sequential leaching. Citric acid was more effective than the other two acids for the selective leaching of nickel and cobalt. An increase in the citric acid concentration negligibly affected the dissolution of the metals, whereas temperature exhibited a strong beneficial effect. Oxalic acid was determined to be the most appropriate organic acid for the second leaching step. After 8 h (4 h + 4 h) of leaching with organic acids (0.5 M citric + 0.5 M oxalic) in sequence at 90℃, 89.63% Ni, 82.89% Co, and 69.63% Fe were leached from the lateritic nickel ore. A sequential citric + oxalic acid leaching method could represent a viable alternative for the dissolution of metals from lateritic nickel ore.
2015, vol. 22, no. 11, pp.
1141-1148.
https://doi.org/10.1007/s12613-015-1178-8
Abstract:
The liquidus and solidus temperatures of FeCrAl stainless steel were determined by differential scanning calorimetry (DSC) at different heating rates. They were also calculated by Thermo-calc software and empirical formulae separately. The accuracy of calculation results was assessed by comparison with the corresponding DSC results. The liquidus temperatures calculated by empirical formulae, which exhibited a maximum deviation of 8.6℃, were more accurate than those calculated using Thermo-calc, which exhibited a maximum deviation of 12.11℃. On the basis of Thermo-calc calculations performed under the Scheil model, the solidus temperature could be well determined from solid fraction (fS) vs. temperature (t) curves at fS = 0.99. Furthermore, a theoretical analysis to determine the solidus temperature with this method was also provided.
The liquidus and solidus temperatures of FeCrAl stainless steel were determined by differential scanning calorimetry (DSC) at different heating rates. They were also calculated by Thermo-calc software and empirical formulae separately. The accuracy of calculation results was assessed by comparison with the corresponding DSC results. The liquidus temperatures calculated by empirical formulae, which exhibited a maximum deviation of 8.6℃, were more accurate than those calculated using Thermo-calc, which exhibited a maximum deviation of 12.11℃. On the basis of Thermo-calc calculations performed under the Scheil model, the solidus temperature could be well determined from solid fraction (fS) vs. temperature (t) curves at fS = 0.99. Furthermore, a theoretical analysis to determine the solidus temperature with this method was also provided.
2015, vol. 22, no. 11, pp.
1149-1156.
https://doi.org/10.1007/s12613-015-1179-7
Abstract:
The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.
The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.
2015, vol. 22, no. 11, pp.
1157-1162.
https://doi.org/10.1007/s12613-015-1180-1
Abstract:
The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates (from 0.05 to 106 K·s-1) was achieved using various solidification processes, including conventional casting, laser remelting, and melt spinning. The size and distribution of inclusions in the steel were observed and statistically collected. For comparison, mathematical models were used to calculate the sizes of inclusions at different solidification cooling rates. Both the statistical size determined from observations and that predicted from calculations tended to decrease with increasing cooling rate; however, the experimental and calculated results did not agree well with each other at excessively high or low cooling rate. The reasons for this discrepancy were theoretically analyzed. For the size distribution of inclusions, the effect of cooling rate on the number densities of large-sized (> 2 μm) inclusions and small-sized (≤ 2 μm) inclusions were distinct. The number density of inclusions larger than 1 µm was not affected when the cooing rate was less than or equal to 6 K·s-1 because inclusion precipitation was suppressed by the increased cooling rate.
The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates (from 0.05 to 106 K·s-1) was achieved using various solidification processes, including conventional casting, laser remelting, and melt spinning. The size and distribution of inclusions in the steel were observed and statistically collected. For comparison, mathematical models were used to calculate the sizes of inclusions at different solidification cooling rates. Both the statistical size determined from observations and that predicted from calculations tended to decrease with increasing cooling rate; however, the experimental and calculated results did not agree well with each other at excessively high or low cooling rate. The reasons for this discrepancy were theoretically analyzed. For the size distribution of inclusions, the effect of cooling rate on the number densities of large-sized (> 2 μm) inclusions and small-sized (≤ 2 μm) inclusions were distinct. The number density of inclusions larger than 1 µm was not affected when the cooing rate was less than or equal to 6 K·s-1 because inclusion precipitation was suppressed by the increased cooling rate.
2015, vol. 22, no. 11, pp.
1163-1170.
https://doi.org/10.1007/s12613-015-1181-0
Abstract:
The effect of thermal aging on the fatigue crack growth (FCG) behavior of Z3CN20-09M cast duplex stainless steel with low ferrite content was investigated in this study. The crack surfaces and crack growth paths were analyzed to clarify the FCG mechanisms. The microstructure and micromechanical properties before and after thermal aging were also studied. Spinodal decomposition in the aged ferrite phase led to an increase in the hardness and a decrease in the plastic deformation capacity, whereas the hardness and plastic deformation capacity of the austenite phase were almost unchanged after thermal aging. The aged material exhibited a better FCG resistance than the unaged material in the near-threshold regime because of the increased roughness-induced crack closure associated with the tortuous crack path and rougher fracture surface; however, the tendency was reversed in the Paris regime because of the cleavage fracture in the aged ferrite phases.
The effect of thermal aging on the fatigue crack growth (FCG) behavior of Z3CN20-09M cast duplex stainless steel with low ferrite content was investigated in this study. The crack surfaces and crack growth paths were analyzed to clarify the FCG mechanisms. The microstructure and micromechanical properties before and after thermal aging were also studied. Spinodal decomposition in the aged ferrite phase led to an increase in the hardness and a decrease in the plastic deformation capacity, whereas the hardness and plastic deformation capacity of the austenite phase were almost unchanged after thermal aging. The aged material exhibited a better FCG resistance than the unaged material in the near-threshold regime because of the increased roughness-induced crack closure associated with the tortuous crack path and rougher fracture surface; however, the tendency was reversed in the Paris regime because of the cleavage fracture in the aged ferrite phases.
2015, vol. 22, no. 11, pp.
1171-1182.
https://doi.org/10.1007/s12613-015-1182-z
Abstract:
The effects of annealing temperature (with the annealing time being constant at 1 h) on the microstructure, ordering, residual stress, mechanical properties, and subsequent cold rolling workability of Fe-6.5wt%Si electrical steel with columnar grains were investigated, where the steel was warm rolled at 500℃ with a reduction of 95%. The results show that recrystallization began to occur in the sample annealed at 575℃ and that full recrystallization occurred in the sample annealed at 625℃. When the annealing temperature was 500℃ or greater, the extent of reordering in the sample was high, which reduced the room-temperature plasticity. However, annealing at temperatures below 300℃ did not significantly reduce the residual tensile stress on the edge of the warm rolled samples. Considering the comprehensive effects of annealing temperature on the recrystallization, reordering, residual stress, and mechanical properties of the warm rolled Fe-6.5wt%Si electrical steel with columnar grains, the appropriate annealing temperature range is 300℃-400℃. Unlike the serious edge cracks that appeared in the sample after direct cold rolling, the annealed samples could be cold rolled to a total reduction of more than 71.4% without the formation of obvious edge cracks, and bright-surface Fe-6.5wt%Si electrical steel strips with a thickness less than 0.1 mm could be fabricated by cold rolling.
The effects of annealing temperature (with the annealing time being constant at 1 h) on the microstructure, ordering, residual stress, mechanical properties, and subsequent cold rolling workability of Fe-6.5wt%Si electrical steel with columnar grains were investigated, where the steel was warm rolled at 500℃ with a reduction of 95%. The results show that recrystallization began to occur in the sample annealed at 575℃ and that full recrystallization occurred in the sample annealed at 625℃. When the annealing temperature was 500℃ or greater, the extent of reordering in the sample was high, which reduced the room-temperature plasticity. However, annealing at temperatures below 300℃ did not significantly reduce the residual tensile stress on the edge of the warm rolled samples. Considering the comprehensive effects of annealing temperature on the recrystallization, reordering, residual stress, and mechanical properties of the warm rolled Fe-6.5wt%Si electrical steel with columnar grains, the appropriate annealing temperature range is 300℃-400℃. Unlike the serious edge cracks that appeared in the sample after direct cold rolling, the annealed samples could be cold rolled to a total reduction of more than 71.4% without the formation of obvious edge cracks, and bright-surface Fe-6.5wt%Si electrical steel strips with a thickness less than 0.1 mm could be fabricated by cold rolling.
2015, vol. 22, no. 11, pp.
1183-1189.
https://doi.org/10.1007/s12613-015-1183-y
Abstract:
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN (M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy (EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN (M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy (EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.
2015, vol. 22, no. 11, pp.
1190-1198.
https://doi.org/10.1007/s12613-015-1184-x
Abstract:
Microstructural evolutions and grain-boundary-character distribution during high-energy-beam welding of ultra-thin FeCo-V foils were studied. Detailed data about the boundaries, coincidence site lattice (CSL) relationships, grain sizes, and microstructural features were acquired from electron-backscatter diffraction (EBSD) maps. Moreover, the evolution of the magnetic properties during high-energy-beam welding was studied using vibrating sample magnetometry (VSM). The fraction of low-angle boundaries was observed to increase in the fusion zones of both electron- and laser-beam-welded foils. The results showed that the fractions of low-Σ CSL boundaries (particularly twin boundaries, Σ3) in the fusion zones of the welded foils are higher than those in the base metal. Because the strain rates produced during high-energy-beam welding are very high (because of the extremely high cooling rate), grain deformation by a slip mechanism is limited; therefore, deformation by grain twinning is dominant. VSM analysis showed that the magnetic properties of the welded foils, i.e., their remanence, coercive force, and energy product, changed significantly. The formation of large grains with preferred orientation parallel to the easy axis of magnetization was the main reason for the diminished magnetic properties.
Microstructural evolutions and grain-boundary-character distribution during high-energy-beam welding of ultra-thin FeCo-V foils were studied. Detailed data about the boundaries, coincidence site lattice (CSL) relationships, grain sizes, and microstructural features were acquired from electron-backscatter diffraction (EBSD) maps. Moreover, the evolution of the magnetic properties during high-energy-beam welding was studied using vibrating sample magnetometry (VSM). The fraction of low-angle boundaries was observed to increase in the fusion zones of both electron- and laser-beam-welded foils. The results showed that the fractions of low-Σ CSL boundaries (particularly twin boundaries, Σ3) in the fusion zones of the welded foils are higher than those in the base metal. Because the strain rates produced during high-energy-beam welding are very high (because of the extremely high cooling rate), grain deformation by a slip mechanism is limited; therefore, deformation by grain twinning is dominant. VSM analysis showed that the magnetic properties of the welded foils, i.e., their remanence, coercive force, and energy product, changed significantly. The formation of large grains with preferred orientation parallel to the easy axis of magnetization was the main reason for the diminished magnetic properties.
2015, vol. 22, no. 11, pp.
1199-1204.
https://doi.org/10.1007/s12613-015-1185-9
Abstract:
The effects of Ni addition and aging treatments on the microstructure and properties of a Cu–3Ti alloy were investigated. The microstructure and precipitation phases were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; the hardness, electrical conductivity, and elastic modulus of the resulting alloys were also tested. The results show that Ni addition increases the electrical conductivity and elastic modulus, but decreases the hardness of the aged Cu–3Ti alloy. Within the range of the experimentally investigated parameters, the optimal two-stage aging treatment for the Cu–3Ti–1Ni and Cu–3Ti–5Ni alloy was 300℃ for 2 h and 450℃ for 7 h. The hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–1Ni alloy were HV 205, 18.2% IACS, and 146 GPa, respectively, whereas the hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–5Ni alloy were HV 187, 31.32% IACS, and 147 GPa, respectively. Microstructural analyses revealed that β'-Ni3Ti and β'-Cu4Ti precipitate from the Cu matrix during aging of the Cu–3Ti–5Ni alloy and that some residual NiTi phase remains. The increased electrical conductivity is ascribed to the formation of NiTi, β'-Ni3Ti, and β'-Cu4Ti phases.
The effects of Ni addition and aging treatments on the microstructure and properties of a Cu–3Ti alloy were investigated. The microstructure and precipitation phases were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; the hardness, electrical conductivity, and elastic modulus of the resulting alloys were also tested. The results show that Ni addition increases the electrical conductivity and elastic modulus, but decreases the hardness of the aged Cu–3Ti alloy. Within the range of the experimentally investigated parameters, the optimal two-stage aging treatment for the Cu–3Ti–1Ni and Cu–3Ti–5Ni alloy was 300℃ for 2 h and 450℃ for 7 h. The hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–1Ni alloy were HV 205, 18.2% IACS, and 146 GPa, respectively, whereas the hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–5Ni alloy were HV 187, 31.32% IACS, and 147 GPa, respectively. Microstructural analyses revealed that β'-Ni3Ti and β'-Cu4Ti precipitate from the Cu matrix during aging of the Cu–3Ti–5Ni alloy and that some residual NiTi phase remains. The increased electrical conductivity is ascribed to the formation of NiTi, β'-Ni3Ti, and β'-Cu4Ti phases.
2015, vol. 22, no. 11, pp.
1205-1211.
https://doi.org/10.1007/s12613-015-1186-8
Abstract:
The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.
The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.
2015, vol. 22, no. 11, pp.
1212-1218.
https://doi.org/10.1007/s12613-015-1187-7
Abstract:
To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.
To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.
2015, vol. 22, no. 11, pp.
1219-1224.
https://doi.org/10.1007/s12613-015-1188-6
Abstract:
A periclase-hercynite brick was prepared via reaction sintering at 1600℃ for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase-hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe2+, Fe3+ and Al3+ ions in hercynite crystals migrate and react with periclase to form (Mg1-xFex)(Fe2-yAly)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg2+ migration leads to the formation of (Mg1-uFeu)(Fe2-vAlv)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure.
A periclase-hercynite brick was prepared via reaction sintering at 1600℃ for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase-hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe2+, Fe3+ and Al3+ ions in hercynite crystals migrate and react with periclase to form (Mg1-xFex)(Fe2-yAly)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg2+ migration leads to the formation of (Mg1-uFeu)(Fe2-vAlv)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure.
2015, vol. 22, no. 11, pp.
1225-1231.
https://doi.org/10.1007/s12613-015-1189-5
Abstract:
The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.
The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.