Wei Yuan, Bo Zhou, Yong Tang, Zhao-chun Zhang, and Jun Deng, Effects of environmental factors on corrosion behaviors of metal-fiber porous components in a simulated direct methanol fuel cell environment, Int. J. Miner. Metall. Mater., 21(2014), No. 9, pp. 913-918. https://doi.org/10.1007/s12613-014-0989-3
Cite this article as:
Wei Yuan, Bo Zhou, Yong Tang, Zhao-chun Zhang, and Jun Deng, Effects of environmental factors on corrosion behaviors of metal-fiber porous components in a simulated direct methanol fuel cell environment, Int. J. Miner. Metall. Mater., 21(2014), No. 9, pp. 913-918. https://doi.org/10.1007/s12613-014-0989-3

Effects of environmental factors on corrosion behaviors of metal-fiber porous components in a simulated direct methanol fuel cell environment

+ Author Affiliations
  • Corresponding author:

    Wei Yuan    E-mail: mewyuan@scut.edu.cn

  • Received: 13 December 2013Revised: 11 March 2014Accepted: 20 March 2014
  • To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. In this study, we report the electrochemical behaviors of metal-fiber-based porous sintered components in a simulated corrosive environment of DMFCs. Three materials were evaluated: pure copper, AISI304, and AISI316L. The environmental factors and related mechanisms affecting the corrosion behaviors were analyzed. The results demonstrated that AISI316L exhibits the best performance. A higher SO42- concentration increases the risk of material corrosion, whereas an increase in methanol concentration inhibits corrosion. The morphological features of the corroded samples were also characterized in this study.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(246) PDF Downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return