Hong-xiang Yin, Ai-min Zhao, Zheng-zhi Zhao, Xiao Li, Shuang-jiao Li, Han-jiang Hu,  and Wei-guang Xia, Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, pp. 262-271. https://doi.org/10.1007/s12613-015-1070-6
Cite this article as:
Hong-xiang Yin, Ai-min Zhao, Zheng-zhi Zhao, Xiao Li, Shuang-jiao Li, Han-jiang Hu,  and Wei-guang Xia, Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, pp. 262-271. https://doi.org/10.1007/s12613-015-1070-6

Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel

+ Author Affiliations
  • Corresponding author:

    Ai-min Zhao    E-mail: aimin.zhao@ustb.edu.cn

  • Received: 14 May 2014Revised: 10 October 2014Accepted: 11 October 2014
  • The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-1.8Mn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a traditional TRIP steel containing as-cold-rolled ferrite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRIP-aided steel with martensite as the original microstructure, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, resulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening behavior is also discussed for both types of steel.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(282) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return