Zhong-wei Chen, Qin-ying Fan, and Kai Zhao, Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons, Int. J. Miner. Metall. Mater., 22(2015), No. 8, pp. 860-867. https://doi.org/10.1007/s12613-015-1143-6
Cite this article as:
Zhong-wei Chen, Qin-ying Fan, and Kai Zhao, Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons, Int. J. Miner. Metall. Mater., 22(2015), No. 8, pp. 860-867. https://doi.org/10.1007/s12613-015-1143-6

Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons

+ Author Affiliations
  • Corresponding author:

    Zhong-wei Chen    E-mail: chzw@nwpu.edu.cn

  • Received: 1 December 2014Revised: 16 March 2015Accepted: 19 March 2015
  • The microstructural characteristics and microhardness of nanostructured Al-4.6Cu-Mn ribbons produced by melt spinning were investigated using field-emission gun scanning electron microscopy, transmission electron microscopy, and hardness testing, and the results were compared to those of similar ribbons manufactured by direct-chill casting. It is shown that the nanostructure of the as-melt-spun ribbons consists of α-Al dendrites with a secondary dendrite arm spacing of approximately 0.55-0.80 μm and ultrafine eutectic crystals of a nanosized scale of approximately 100-200 nm on dendritic boundaries. The solidification time and cooling rate of 46-μm-thick ribbons were estimated to be 1.3×10-6 s and 4.04×106 K·s-1, respectively. At an aging temperature of 190℃, the coherent θ″ phase in aged ribbons gradually transforms into nanoscale θ'-phase platelets as the aging time is extended from 2 to 8 h; the rod-like morphology of the T (Al20Cu2Mn3) dispersoid with 120-160-nm diameter also forms, which results in peak aging hardness. The precipitation behaviors of aged ribbons cannot be changed at the high cooling rates of as-cast ribbons. However, a finer and more uniformly distributed microstructure and a supersaturated solid solution at a high cooling rate can shorten the time required to obtain a certain aging hardness before peak hardness.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(215) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return