Liang-xian Chen, Sheng Liu, Cheng-ming Li, Yi-chao Wang, Jin-long Liu, and Jun-jun Wei, Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering, Int. J. Miner. Metall. Mater., 22(2015), No. 10, pp. 1108-1114. https://doi.org/10.1007/s12613-015-1174-z
Cite this article as:
Liang-xian Chen, Sheng Liu, Cheng-ming Li, Yi-chao Wang, Jin-long Liu, and Jun-jun Wei, Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering, Int. J. Miner. Metall. Mater., 22(2015), No. 10, pp. 1108-1114. https://doi.org/10.1007/s12613-015-1174-z

Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering

+ Author Affiliations
  • Corresponding author:

    Cheng-ming Li    E-mail: chengmli@mater.ustb.edu.cn

  • Received: 19 March 2015Revised: 24 April 2015Accepted: 4 May 2015
  • Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite–ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(250) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return