Bin-bin Wei, Yan-bo Wu, Fang-yuan Yu, and Ya-nan Zhou, Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers, Int. J. Miner. Metall. Mater., 23(2016), No. 4, pp.474-480. https://dx.doi.org/10.1007/s12613-016-1258-4
Cite this article as: Bin-bin Wei, Yan-bo Wu, Fang-yuan Yu, and Ya-nan Zhou, Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers, Int. J. Miner. Metall. Mater., 23(2016), No. 4, pp.474-480. https://dx.doi.org/10.1007/s12613-016-1258-4

Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers

Author Affilications
Funds: 

This work was financially supported by the Natural Science Foundation of China (No. 21076028), the National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201410150016).

  • Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C (1.0C = 170 mA·g-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mAh·g-1, even at 2C.
  • Related Articles

    [1]M. H. Farshidi, M. Rifai, H. Miyamoto. Microstructure evolution of a recycled Al-Fe-Si-Cu alloy processed by tube channel pressing [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(10): 1166-1172. DOI: 10.1007/s12613-018-1668-6
    [2]Zhi Li, Shi-jie Zhou, Nan Huang. Effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 639-647. DOI: 10.1007/s12613-015-1117-8
    [3]J. Nemati, G. H. Majzoobi, S. Sulaiman, B. T. H. T. Baharudin, M. A. Azmah Hanim. Effect of equal channel angular extrusion on Al-6063 bending fatigue characteristics [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(4): 395-404. DOI: 10.1007/s12613-015-1085-z
    [4]M. Namdar, S. A. Jenabali Jahromi. Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(3): 285-291. DOI: 10.1007/s12613-015-1072-4
    [5]Yi-heng Cao, Pin-feng Jia, Kang Wang, Li-zi He, Ping Wang, Jian-zhong Cui. Microstructural evolution of ECAPed 1050 alloy under magnetic annealing [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(12): 1205-1214. DOI: 10.1007/s12613-014-1028-0
    [6]J. Nemati, G. H. Majzoobi, S. Sulaiman, B. T. H. T. Baharudin, M. A. Azmah Hanim. Improvements in the microstructure and fatigue behavior of pure copper using equal channel angular extrusion [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(6): 569-576. DOI: 10.1007/s12613-014-0943-4
    [7]Thabet Makhlouf, Atef Rebhi, Jean-Philippe Couzinié, Yannick Champion, Nabil Njah. Microstructural evolution of a recycled aluminum alloy deformed by equal channel angular pressing process [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(11): 1016-1022. DOI: 10.1007/s12613-012-0663-6
    [8]Ying Liu, Wei Li, Yuan-yuan Li. Microstructure and mechanical properties of ZE10 magnesium alloy prepared by equal channel angular pressing [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 559-563. DOI: 10.1016/S1674-4799(09)60096-0
    [9]Youhong Zhang, Guozhi Lv, Hui Wang, Bomei Si, Yueliang Cheng. Corrosion damage evolution and residual strength of corroded aluminum alloys [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(4): 430-433. DOI: 10.1016/S1005-8850(08)60081-X
    [10]Zhenhua Li, Xianhua Cheng. Deformation temperature and postdeformation annealing effects on severely deformed TiNi alloy by equal channel angular extrusion [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(6): 533-537. DOI: 10.1016/S1005-8850(07)60123-6

Catalog

    Share Article

    Article Metrics

    Article views (280) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return