M. M. S. Sanad and M. M. Rashad, Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore, Int. J. Miner. Metall. Mater., 23(2016), No. 9, pp. 991-1000. https://doi.org/10.1007/s12613-016-1316-y
Cite this article as:
M. M. S. Sanad and M. M. Rashad, Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore, Int. J. Miner. Metall. Mater., 23(2016), No. 9, pp. 991-1000. https://doi.org/10.1007/s12613-016-1316-y

Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

+ Author Affiliations
  • Corresponding author:

    M. M. S. Sanad    E-mail: mustafa_sanad2002@yahoo.com

  • Received: 20 January 2016Revised: 15 March 2016Accepted: 16 March 2016
  • Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg–1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(240) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return