Hong-tao Liu, Ji-xue Zhou, Dong-qing Zhao, Yun-teng Liu, Jian-hua Wu, Yuan-sheng Yang, Bai-chang Ma, and Hai-hua Zhuang, Characteristics of AZ31 Mg alloy joint using automatic TIG welding, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 102-108. https://doi.org/10.1007/s12613-017-1383-8
Cite this article as:
Hong-tao Liu, Ji-xue Zhou, Dong-qing Zhao, Yun-teng Liu, Jian-hua Wu, Yuan-sheng Yang, Bai-chang Ma, and Hai-hua Zhuang, Characteristics of AZ31 Mg alloy joint using automatic TIG welding, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 102-108. https://doi.org/10.1007/s12613-017-1383-8
Research Article

Characteristics of AZ31 Mg alloy joint using automatic TIG welding

+ Author Affiliations
  • Corresponding author:

    Hong-tao Liu    E-mail: hongtaoliu@sdas.org

  • Received: 2 July 2016Revised: 12 September 2016Accepted: 18 September 2016
  • The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.
  • loading
  • [1]
    T. M. Pollock, Weight Loss with Magnesium Alloys, Science, 328(2010), No. 5981, p. 986.
    [2]
    M. K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39(2008), No. 9, p. 851.
    [3]
    H. Hu, A. Yu, N. Li, and J. E. Allison, Potential magnesium alloys for high temperature die cast automotive applications:a review, Mater. Manuf. Processes, 18(2003), No. 5, p. 687.
    [4]
    J. Shen and N. Xu, Effect of preheat on TIG welding of AZ61 magnesium alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 360.
    [5]
    N. Xu, J. Shen, W. D. Xie, L. Z. Wang, D. Wang, and D. Min, Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates, Mater. Charact., 61(2010), No. 7, p. 713.
    [6]
    C. M. Lin, H. L. Tsai, C. L. Lee, D. S. Chou, S. F. Lee, J. C. Huang, and J. W. Huang, Influence of CO2 laser welding parameters on the microstructure, metallurgy, and mechanical properties of Mg-Al alloys, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1114.
    [7]
    L. M. Liu, G. Song, and M. S. Chi, Laser-tungsten inert gas hybrid welding of dissimilar AZ based magnesium alloys, Mater. Sci. Technol., 21(2005), No. 9, p. 1078.
    [8]
    S. Mironov, T. Onuma, Y. S. Sato, and H. Kokawa, Microstructure evolution during friction-stir welding of AZ31 magnesium alloy, Acta Mater., 100(2015), p. 301.
    [9]
    D. Wang, J. Shen, and L. Z. Wang, Effects of the types of overlap on the mechanical properties of FSSW welded AZ series magnesium alloy joints, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 231.
    [10]
    Y. J. Quan, Z. H. Chen, X. S. Gong, and Z. H. Yu, Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31, Mater. Charact., 59(2008), No. 10, p. 1491.
    [11]
    S. F. Su, H. K. Lin, J. C. Huang, and N. J. Ho, Electron-beam welding behavior in Mg-Al-based alloys, Metall. Mater. Trans. A, 33(2002), No. 5, p. 1461.
    [12]
    S. T. Niknejad, L. Liu, T. Nguyen, M. -Y. Lee, S. Esmaeili, and N. Y. Zhou, Effects of heat treatment on grain-boundary β-Mg17Al12 and fracture properties of resistance spot-welded AZ80 Mg alloy, Metall. Mater. Trans. A, 44(2013), No. 8, p. 3747.
    [13]
    M. Gao, S. W. Mei, Z. M. Wang, X. Y. Li, and X. Y. Zeng, Process and joint characterizations of laser-MIG hybrid welding of AZ31 magnesium alloy, J. Mater. Process. Technol., 212(2012), No. 6, p. 1338.
    [14]
    T. P. Zhu, Z. W. Chen, and W. Gao, Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy, Mater. Charact., 59(2008), No. 11, p. 1550.
    [15]
    L. Commin, M. Dumont, R. Rotinat, F. Pierron, J. E. Masse, and L. Barrallier, Texture evolution in Nd:YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties, Mater. Sci. Eng. A, 528(2011), No. 4-5, p. 2049.
    [16]
    S. Kou, Welding Metallurgy, Wiley, Hoboken, 2003, p. 175.
    [17]
    W. F. Savage, C. D. Lundin, and A. H. Aronson, Weld metal solidification mechanics, Weld. J., 44(1965), p. s175.
    [18]
    S. M. Chowdhury, D. L. Chen, S. D. Bhole, E. Powidajko, D. C. Weckman, and Y. Zhou, Microstructure and mechanical properties of fiber-laser-welded and diode-laser-welded AZ31 magnesium alloy, Metall. Mater. Trans. A, 42(2011), No. 7, p. 1974.
    [19]
    B. S. Naik, D. L. Chen, X. Cao, and P. Wanjara, Microstructure and fatigue properties of a friction stir lap welded magnesium alloy, Metall. Mater. Trans. A, 44(2013), No. 8, p. 3732.
    [20]
    J. F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater., 48(2003), No. 8, p. 1009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(546) PDF Downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return