Cite this article as: |
Xiao-fang Shi, Li-zhong Chang, and Jian-jun Wang, Effect of ultrasonic power introduced by a mold copper plate on the solidification process, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 139-146. https://doi.org/10.1007/s12613-017-1388-3 |
Li-zhong Chang E-mail: clz1997@163.com
[1] |
Z.B. Li, Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010, p. 46.
|
[2] |
L.Z. Chang, X.F. Shi, R.X. Wang, and J.Q. Cong, Effects of mould rotation on element segregation and compact density of electroslag ingots during electroslag remelting process, High Temp. Mater. Processes, 34(2014), No. 5, p. 469.
|
[3] |
L.Z. Chang, X.F. Shi, J.Q. Cong, and R.X. Wang, Effects of relative motion between consumable electrodes and mould on solidification structure of electroslag ingots during electroslag remelting process, Ironmaking Steelmaking, 41(2014), No. 8, p. 611.
|
[4] |
Y.W. Dong, Z.H. Jiang, and Z.B. Li, Investigation on solidification quality of industrial-scale ESR ingot,[in] Proceedings of the International Symposium on Liquid Metal Processing and Casting, Santa Fe, 2009, p. 309.
|
[5] |
X.M. Zang, T.Y. Qiu, W.M. Li, X. Deng, Z.H. Jiang, and H. Song, Electroslag remelting withdrawing technology for offshore jack-up platform rack steel manufacturing process, J. Iron Steel Res. Int., 23(2016), No. 4, p. 297.
|
[6] |
H. Holzgruber and W. Holzgruber, ESR development at INTECO,[in] Medovar Memorial Symposium, Kyiv, Ukraine, 2001, p. 41.
|
[7] |
L.B. Medovar, A.K. Tsykulenko, V.Ya. Saenko, A.V. Chernets, B.B. Fedorovskll, V.I. Us, and I.A. Lantsman, New electroslag technologies,[in] Medovar Memorial Symposium, Kyiv, 2001, p. 49.
|
[8] |
Y.W. Dong, Z.H. Jiang, L. Medovar, G. Stovpchenko, X.F. Zhang, X.M. Zang, and X. Deng, Temperature distribution of electroslag casting with liquid metal using current conductive ring, Steel Res. Int., 84(2013), No. 10, p. 1011.
|
[9] |
J.J. Wang, X.F. Shi, L.Z. Chang, H.J. Wang, and L.P. Meng, Effect of ultrasonic treatment on the solidification microstructure of GCr15 bearing steel, High Temp. Mater. Processes, 35(2016), No. 2, p. 161.
|
[10] |
X.B. Liu, O. Yoshiaki, T. Susumu, and M. Toshiji, Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration, Mater. Sci. Eng. A, 487(2008), No. 1-2, p. 120.
|
[11] |
S.L. Zhang, Y.T. Zhao, X.N. Cheng, G. Chen, and Q.X. Dai, High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy, J. Alloys Compd., 470(2009), No. 1-2, p. 168.
|
[12] |
T. Watanabe, M. Shiroki, A. Yanagisawa, and T. Sasaki, Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration, J. Mater. Process. Technol., 210(2010), No. 12, p. 1646.
|
[13] |
T.V. Atamanenko, D.G. Eskin, M. Sluiter, and L. Katgerman, On the mechanism of grain refinement in Al-Zr-Ti alloys, J. Alloys Compd., 509(2011), No. 1, p. 57.
|
[14] |
M. Qian, A. Ramirez, and A. Das, Ultrasonic refinement of magnesium by cavitation:Clarifying the role of wall crystals, J. Cryst. Growth, 311(2009), No. 14, p. 3708.
|
[15] |
Q.M. Liu, Q.J. Zhai, F.P. Qi, and Y. Zhang, Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel, Mater. Lett., 61(2007), No. 11-12, p. 2422.
|
[16] |
H.Z. Wang, Original position statistic distribution analysis (original position analysis):a new analytical method in research and quality evaluation of materials, Sci. China Chem., 46(2003), No. 2, p. 119.
|
[17] |
H.Z. Wang, A new method of statistic characterization of specific properties of materials:original position statistic distribution analysis, Phys. Test. Chem. Anal., 42(2006), No. 1, p. 1.
|
[18] |
H.Z. Wang, Original position statistic distribution analysis:new analytical method in quality evaluation of process metallurgy and metal materials, Chin. J. Nonferrous Met., 14(2004), Suppl. 1, p. 98.
|