Jin-long Li, Wan Wang, and Chun-gen Zhou, Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp. 289-296. https://doi.org/10.1007/s12613-017-1407-4
Cite this article as:
Jin-long Li, Wan Wang, and Chun-gen Zhou, Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp. 289-296. https://doi.org/10.1007/s12613-017-1407-4
Research Article

Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy

+ Author Affiliations
  • Corresponding author:

    Chun-gen Zhou    E-mail: cgzhou@buaa.edu.cn

  • Received: 4 August 2016Revised: 3 November 2016Accepted: 7 November 2016
  • To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb-Si-based alloy substrate, the coating was oxidized at 1250℃ for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X=Ti, Cr, Hf) coating and the Nb-Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h-1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.
  • loading
  • [1]
    J.H. Perepezko, The hotter the engine, the better, Science, 326(2009), No. 5956, p. 1068.
    [2]
    W.Y. Gong, L.J. Zhang, D.Z. Yao, and C.G. Zhou, Diffusivities and atomic mobilities in fcc Ni-Pt alloys, Scripta Mater., 61(2009), No. 1, p. 100.
    [3]
    C.G. Zhou, C.L. Wang, and Y.X. Song, Evaluation of cyclic oxidation of thermal barrier coatings exposed to NaCl vapor by finite element method, Mater. Sci. Eng. A, 490(2008), No.1-2, p. 351.
    [4]
    K.M. Emran, S.T. Arab, A.M. Al-Turkustani, and H.A. Al-Turaif, Temperature effect on the corrosion and passivation characterization of Ni82.3Cr7Fe3Si4.5B3.2 alloy in acidic media, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 205.
    [5]
    C.G. Zhou, J.S. Yu, S.K. Gong, and H.B. Xu, Influence of water vapor on the high temperature oxidation behavior of thermal barrier coatings, Mater. Sci. Eng. A, 348(2003), No. 1-2, p. 327.
    [6]
    H.B. Guo, S.K. Gong, C.G. Zhou, and H.B. Xu, Investigation on hot-fatigue behaviors of gradient thermal barrier coatings by EB-PVD, Surf. Coat. Technol., 148(2001), No. 2-3, p. 110.
    [7]
    U.P. Kumar and C.J. Kennady, Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni-W alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1060.
    [8]
    H. Huang, C. Liu, L.Y. Ni, and C.G. Zhou, Evaluation of microstructural evolution of thermal barrier coatings exposed to Na2SO4 using impedance spectroscopy, Corros. Sci., 53(2011), No. 4, p. 1369.
    [9]
    D.Z. Yao, R. Cai, C.G. Zhou, J.B. Sha, and H.R. Jiang, Experimental study and modeling of high temperature oxidation of Nb-base in situ composites, Corros. Sci., 51(2009), No. 2, p. 364.
    [10]
    Z. Yazdani, F. Karimzadeh, M.H. Abbasi, and A. Amini, Characterization of NbSi2-Al2O3 nanocomposite coatings prepared with plasma spraying mechanically alloyed powders, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 748.
    [11]
    K. Zelenitsas and P. Tsakiropoulos, Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800℃, Mater. Sci. Eng. A, 416(2006), No. 1-2, p. 269.
    [12]
    J. Wang, X.P. Guo, and J.M. Guo, Effects of B on the microstructure and oxidation resistance of Nb-Ti-Si-based ultrahigh-temperature alloy, Chin. J. Aeronaut, 22(2009), No. 5, p. 544.
    [13]
    J. Geng and P. Tsakiropoulos, A study of the microstructures and oxidation of Nb-Si-Cr-Al-Mo in situ composites alloyed with Ti, Hf, Sn, Intermetallics, 15(2007), No. 3, p. 382.
    [14]
    A. Rauf, Q. Yu, L. Jin, and C. Zhou, Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying, Scripta Mater., 66(2012), No. 2, p. 109.
    [15]
    S. Majumdar, A. Arya, I.G. Sharma, A.K. Suri, and S. Banerjee, Deposition of aluminide and silicide based protective coatings on niobium, Appl. Surf. Sci., 257(2010), No. 2, p. 635.
    [16]
    T.P. Chow, K. Hamzeh, and A.J. Steckl, Thermal oxidation of niobium silicide thin films, J. Appl. Phys., 54(1983), No. 5, p. 2716.
    [17]
    X.D. Tian and X.P. Guo, Structure of Al-modified silicide coatings on an Nb-based ultrahigh temperature alloy prepared by pack cementation techniques, Surf. Coat. Technol., 203(2009), No. 9, p. 1161.
    [18]
    A.E. Kudryashov, A.Y. Potanin, D.N. Lebedev, I.V. Sukhorukova, D.V. Shtansky, and E.A. Levashov, Structure and properties of Cr-Al-Si-B coatings produced by pulsed electrospark deposition on a nickel alloy, Surf. Coat. Technol., 285(2016), p. 278.
    [19]
    Y.Q. Qiao and X.P. Guo, Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process, Appl. Surf. Sci., 256(2010), No. 24, p. 7462.
    [20]
    W. Wang, B.F. Yuan, and C.G. Zhou, Formation and oxidation resistance of germanium modified silicide coating on Nb based in situ composites, Corros. Sci., 80(2014), p. 164.
    [21]
    J. Pang, W. Wang, and C.G. Zhou, Microstructure evolution and oxidation behavior of B modified MoSi2 coating on Nb-Si based alloys, Corros. Sci., 105(2016), p. 1.
    [22]
    Z.K. Zheng, W.M. Mao, Z.Y. Liu, D. Wang, and R. Yue, Refinement of primary Si grains in Al-20% Si alloy slurry through serpentine channel pouring process, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 572.
    [23]
    W. Wang and C.G. Zhou, Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy, Corros. Sci., 110(2016), p. 114.
    [24]
    A. Mueller, G. Wang, and R.A. Rapp, Oxidation behavior of tungsten and germanium-alloyed molybdenum disilicide coatings, Mater. Sci. Eng. A, 155(1992), No. 1-2, p. 199.
    [25]
    B.V. Cockeram and R.A. Rapp, Oxidation-resistant boronand germanium-doped silicide coatings for refractory metals at high temperature, Mater. Sci. Eng. A, 192-193(1995), p. 980.
    [26]
    P. Zhang and X.P. Guo, Y and Al modified silicide coatings on an Nb-Ti-Si based ultrahigh temperature alloy prepared by pack cementation process, Surf. Coat. Technol., 206(2011), No. 2-3, p. 446.
    [27]
    W. Wang and C.G. Zhou, Hot corrosion behaviour of Nbss/Nb5Si3 in situ composites in the mixture of Na2SO4 and NaCl melts, Corros. Sci., 74(2013), p. 345.
    [28]
    Z.P. Sun, X.P. Guo, and B.H. Guo, Effect of B and Ti on the directionally solidified microstructure of the Nb-Si alloys, Int. J. Refract. Met. Hard Mater., 51(2015), p. 243.
    [29]
    J.C. Zhao, M.R. Jackson, and L.A. Peluso, Determination of the Nb-Cr-Si phase diagram using diffusion multiples, Acta Mater., 51(2003), No. 20, p. 6395.
    [30]
    G. Shao, Thermodynamic modelling of the Cr-Nb-Si system, Intermetallics, 13(2005), No. 1, p. 69.
    [31]
    X. Li, X.P. Guo, and Y.Q. Qiao, Structure and oxidation behavior of Zr-Y modified silicide coatings prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy, Oxid. Met., 83(2015), No. 3, p. 253.
    [32]
    F. Michihisa, M. Yuzi, H. Shigenari, N. Toshio, S. Kazusi, K. Akio and T. Ryouhei, Coatings of Nb-based alloy by Cr and/or Al pack cementations and its oxidation behavior in Air at 1273-1473 K, Mater. Trans., 44(2003), No. 4, p. 731.
    [33]
    C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, Reactive growth of niobium silicides in bulk diffusion couples, Acta Mater., 51(2003), No. 16, p. 4837.
    [34]
    S. Prasad and A. Paul, Growth mechanism of phases by interdiffusion and diffusion of species in the niobium-silicon system, Acta Mater., 59(2011), No. 4, p. 1577.
    [35]
    M.A. Dayananda, An analysis of concentration profiles for fluxes, diffusion depths, and zero-flux planes in multicomponent diffusion, Metall. Trans. A, 14(1983), No. 9, p. 1851.
    [36]
    P.C. Tortorici and M.A. Dayananda, Interdiffusion and diffusion structure development in selected refractory metal silicides, Mater. Sci. Eng. A, 261(1999), No. 1-2, p. 64.
    [37]
    C.L. Yeh, H.J. Wang, and W.H. Chen, A comparative study on combustion synthesis of Ti-Si compounds, J. Alloys Compd., 450(2008), No. 1-2, p. 200.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(483) PDF Downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return