Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, and Yong Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp. 332-341. https://doi.org/10.1007/s12613-017-1412-7
Cite this article as:
Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, and Yong Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp. 332-341. https://doi.org/10.1007/s12613-017-1412-7
Research Article

A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties

+ Author Affiliations
  • Corresponding author:

    Yong Li    E-mail: yongli@mater.ustb.edu.cn

  • Received: 3 November 2016Revised: 16 December 2016Accepted: 19 December 2016
  • Mg5Al2.4Zr1.7O12 metastable phase was successfully synthesized from analytical-grade MgO, α-Al2O3, MgAl2O4, and ZrO2 under an N2 atmosphere. The sintering temperature was varied from 1650 to 1780℃, and the highest amount of Mg5Al2.4Zr1.7O12 appeared in the composite material when the sintering temperature was 1760℃. According to our research of the formation mechanism of Mg5Al2.4Zr1.7O12, the formation and growth of MgAl2O4 dominated when the temperature was not higher than 1650℃. When the temperature was higher than 1650℃, MgO and ZrO2 tended to diffuse into MgAl2O4 and the Mg5Al2.4Zr1.7O12 solid solution was formed. When the temperature reached 1760℃, the formation of Mg5Al2.4Zr1.7O12 was completed. The effect of MgAl2O4 spinel crystals was also studied, and their introduction into the composite material promoted the formation and growth of Mg5Al2.4Zr1.7O12. A highly dispersed MgO-MgAl2O4-ZrO2 composite material was prepared through the decomposition of the Mg5Al2.4Zr1.7O12 metastable phase. The as-prepared composite material showed improved overall physical properties because of the good dispersion of MgO, MgAl2O4, and ZrO2 phases.
  • loading
  • [1]
    C. Aksel, B. Rand, F.L. Riley, and P.D. Warren, Mechanical properties of magnesia-spinel composites, J. Eur. Ceram. Soc., 22(2002), No. 5, p. 745.
    [2]
    A. Ghosh, R. Sarkar, B. Mukherjee, and S.K. Das, Effect of spinel content on the properties of magnesia-spinel composite refractory, J. Eur. Ceram. Soc., 24(2004), No. 7, p. 2079.
    [3]
    P. Jiang, J. Chen, M.W. Yan, B. Li, J.D. Su, and X.M. Hou, Morphology characterization of periclase-hercynite refractories by reaction sintering, Int. J. Miner. Metall. Mater.,22(2015), No. 11, p. 1219.
    [4]
    D. Mohapatra and D. Sarkar, Preparation of MgO-MgAl2O4 composite for refractory application, J. Mater. Process. Technol., 189(2007), No. 1-3, p. 279.
    [5]
    C.H. Gao, P.J. Jiang, Y. Li, J.L. Sun, J.J. Zhang, and H.Y. Yang,One step sintering of homogenized bauxite raw material and kinetic study, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1231.
    [6]
    C. Aksel and P.D. Warren, Work of fracture and fracture surface energy of magnesia-spinel composites, Compos. Sci. Technol., 63(2003), No. 10, p. 1433.
    [7]
    C. Aksel, P.D. Warren, and F.L. Riley, Fracture behavior of magnesia and magnesia-spinel composites before and after thermal shock, J. Eur. Ceram. Soc., 24(2004), No. 8, p. 2407.
    [8]
    J. Szczerba, Chemical corrosion of basic refractories by cement kiln materials, Ceram. Int., 36(2010), p. 1877.
    [9]
    S. Serena, M.A. Sainz, and A. Caballero, Corrosion behavior of MgO-CaZrO3 refractory matrix by clinker, J. Eur. Ceram. Soc., 24(2004), No. 8, p. 2399.
    [10]
    R. Ceylantekin and C. Aksel, Improvements on corrosion behaviours of MgO-spinel composite refractories by addition of ZrSiO4, J. Eur. Ceram. Soc., 32(2012), No. 4, p. 727.
    [11]
    V. Petkov, P.T. Jones, E. Boydens, B. Blanpain, and P. Wollants, Chemical corrosion mechanisms of magnesia-chromite and chrome-free refractory bricks by copper metal and anode slag, J. Eur. Ceram. Soc., 27(2007), No. 6, p. 2433.
    [12]
    M. Karakus, M.D. Crites, and M.E. Schlesinger, Cathodoluminescence microscopy characterization of chrome-free refractories for copper smelting and converting furnaces, J. Microsc., 200(2000), p. 50.
    [13]
    P.T. Jones, J. Vleugels, I. Volders, B. Blanpain, O. Van der Biest, and P. Wollants, A study of slag-infiltrated magnesia-chromite refractories using hybrid microwave heating, J. Eur. Ceram. Soc., 22(2002), p. 903.
    [14]
    A. Malfliet, S. Lotfian, L. Scheunis,V. Petkov, L. Pandelaers, P.T. Jones, and B. Blanpain, Degradation mechanisms and use of refractory linings in copper production processes:a critical review, J. Eur. Ceram. Soc., 34(2014), No. 3, p. 849.
    [15]
    C.A.R. González, W.F. Caley, and R.A.L. Drew, Copper matte penetration resistance of basic refractories, Metall. Mater. Trans. B, 38(2007), No. 2, p. 167.
    [16]
    R. Ceylantekin and C. Aksel, Improvements on the mechanical properties and thermal shock behavior of MgO-spinel composites refractories by ZrO2 incorporation, Ceram. Int., 38(2012), No. 2, p. 995.
    [17]
    I. Ganesh and J.M.F. Ferreria, Synthesis and characterization of MgAl2O4-ZrO2 composites, Ceram. Int., 35(2009), No. 1, p. 259.
    [18]
    R.R. Chen, P.X. He, J.N. Mou, and N. Wang, Research of slag corrosion resistance of chrome free refractories for RH vessel lining, Refractories, 39(2005), No. 5, p. 357.
    [19]
    B. Sahin and C. Aksel, Developments on the mechanical properties of MgO-MgAl2O4 composite refractories by ZrSiO4-3mol% Y2O3 addition, J. Eur. Ceram. Soc., 32(2012), No. 1, p. 49.
    [20]
    R. Ceylantekin and C. Aksel, The comparison of mechanical behavior of MgO-MgAl2O4 with MgO-ZrO2 and MgO-MgAl2O4-ZrSiO4 composite refractories, Ceram. Int., 38(2012), No. 2, p. 1409.
    [21]
    G.X. Yin, B. Pan,X.K. Gao,and Q. Song, Corrosion resistance mechanism of magnesia zirconia brick to RH furnace slag, Refractories, 44(2010), No. 4, p. 413.
    [22]
    J. McKittrick and G. Kalonji, Non-stoichiometry and defect structures in rapidly solidified MgO-Al2O3-ZrO2 ternary eutectics, Mater. Sci. Eng. A, 231(1997), No.1-2, p. 90.
    [23]
    P. Tassot, G. König, F.A. Seifert, and F. Liebau, Subsolidus, high temperature phase relations in the systems Al2O3-Cr2O3-ZrO2, MgO-Cr2O3-ZrO2, and MgO-Al2O3-ZrO2, J. Mater. Sci., 21(1986), No. 10, p. 3479.
    [24]
    P. Tassot, G. König, F. Liebau, and F. Seifert. A new magnesium aluminium zirconium oxide, Mg5+xAl2.4-xZr1.7+0.25xO12 with -0.4 ≤ x ≤ 0.4, J. Appl. Cryst., 16(1983), p. 649.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(442) PDF Downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return