Ying-bo Dong, Hao Li, Hai Lin, and Yuan Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 369-376. https://doi.org/10.1007/s12613-017-1416-3
Cite this article as:
Ying-bo Dong, Hao Li, Hai Lin, and Yuan Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 369-376. https://doi.org/10.1007/s12613-017-1416-3
Research Article

Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

+ Author Affiliations
  • Corresponding author:

    Hai Lin    E-mail: linhai@ces.ustb.edu.cn

  • Received: 29 June 2016Revised: 25 July 2016Accepted: 29 August 2016
  • The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30℃, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3)α-(1-α)2/3=k1t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.
  • loading
  • [1]
    H. R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides:a review, Hydrometallurgy, 84(2006), No. 1-2, p. 81.
    [2]
    Y. G. Guo, P. Huang, W. G. Zhang, X. W. Yuan, F. X. Fan, H. L. Wang, J. S. Liu, and Z. H. Wang, Leaching of heavy metals from Dexing copper mine tailings pond, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 3068.
    [3]
    X. L. Mo, H. Lin, K. B. Fu, Y. B. Dong, and C. Y. Xu, Effect of sericite on bioleaching of chalcopyrite, Chin. J. Nonferrous Met., 22(2012), No. 5, p. 1475.
    [4]
    M. Dopson, L. Lövgren, and B. Dan, Silicate mineral dissolution in the presence of acidophilic microorganisms:Implications for heap bioleaching, Hydrometallurgy, 96(2009), No. 4, p. 288.
    [5]
    V. Ochoaherrera, G. León, Q. Banihani, J. A. Field, and R. Sierraalvarez, Toxicity of copper (Ⅱ) ions to microorganisms in biological wastewater treatment systems, Sci. Total Environ., 412-413(2011), No. 13, p. 380.
    [6]
    J. Fischer, A. Quentmeier, S. Gansel, V. Sabados, and C. G. Friedrich, Inducible aluminium resistance of Acidiphilium cryptum and aluminium tolerance of other acidophilic bacteria, Arch. Microbiol., 178(2002), No. 6, p. 554.
    [7]
    K. R. Blight and D. E. Ralph, Aluminium sulphate and potassium nitrate effects on batch culture of iron oxidising bacteria, Hydrometallurgy, 92(2008), No. 3-4, p. 130.
    [8]
    M. Suwalsky, B. Norris, F. Villena, F. Cuevas, P. Sotomayor, and P. Zatta, Aluminum fluoride affects the structure and functions of cell membranes, Food Chem. Toxicol., 42(2004), No. 6, p. 925.
    [9]
    Y. B. Dong, H. Lin, H. Wang, X. L. Mo, K. B. Fu, and H. W. Wen, Effects of ultraviolet mutation on bioleaching of low-grade copper tailings, Miner. Eng., 24(2011), No. 8, p. 870.
    [10]
    D. Bingöl, M. Canbazoğlu, and S. Aydoğan, Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching, Hydrometallurgy, 76(2005), No. 1-2, p. 55.
    [11]
    David R. Ely, R. Edwin Garcíab, and M. Thommes, Ostwald-Freundlich diffusion-limited dissolution kinetics of nanoparticles, Powder Technol., 257(2014), p. 120.
    [12]
    A. Sanna, A. Lacinska, M. Styles, and M. M. Maroto-Valer, Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration, Fuel Process. Technol., 120(2010), No. 4, p. 128.
    [13]
    A. A. Baba and F. A. Adekola, A study of dissolution kinetics of a Nigerian galena ore in hydrochloric acid, J. Saudi Chem. Soc., 16(2012), No. 4, p. 377.
    [14]
    M. Gleisner, R. B. H. Jr, and P. C. F. Kockuma, Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen, Chem. Geol., 225(2006), No. 1-2, p. 16.
    [15]
    Z. Y. Ding, Z. L. Yin, H. P. Hu, and Q. Y. Chen, Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution, Hydrometallurgy, 104(2010), No. 2, p. 201.
    [16]
    K. C. Liddell, Shrinking core models in hydrometallurgy:What students are not being told about the pseudo-steady approximation, Hydrometallurgy, 79(2005), No. 1-2, p. 62.
    [17]
    R. Salmimies, M. Mannila, J. Kallas, and A. Häkkinen, Acidic dissolution of hematite:kinetic and thermodynamic investigations with oxalic acid, Int. J. Miner. Process., 110-111(2012), p. 121.
    [18]
    T. J. Hu, G. M. Zeng, and X. Z. Yuan, Leaching kinetics of silver extracted by thiourea from residue in hydrometallurgy of zinc, Chin. J. Nonferrous Met., 11(2001), No. 5, p. 933.
    [19]
    S. H. Ju, M. T. Tang, S. H. Yang, and Y. Li, Dissolution kinetics of smithsonite ore in ammonium chloride solution, Hydrometallurgy, 80(2005), No. 1, p. 67.
    [20]
    V. Safari, G. Arzpeyma, F. Rashchi, and N. Mostoufi, A shrinking particle-shrinking core model for leaching of a zinc ore containing silica, Int. J. Miner. Process., 93(2009), No. 1, p. 79.
    [21]
    A. Amiri, G. D. Ingram, A. V. Bekker, I. Livk, and N. E. Maynard, A multi-stage, multi-reaction shrinking core model for self-inhibiting gas-solid reactions, Adv. Powder Technol., 24(2013), No. 4, p. 728.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(411) PDF Downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return