Zhi-hao Yao, Shao-cong Wu, Jian-xin Dong, Qiu-ying Yu, Mai-cang Zhang, and Guang-wei Han, Constitutive behavior and processing maps of low-expansion GH909 superalloy, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 432-443. https://doi.org/10.1007/s12613-017-1424-3
Cite this article as:
Zhi-hao Yao, Shao-cong Wu, Jian-xin Dong, Qiu-ying Yu, Mai-cang Zhang, and Guang-wei Han, Constitutive behavior and processing maps of low-expansion GH909 superalloy, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 432-443. https://doi.org/10.1007/s12613-017-1424-3
Research Article

Constitutive behavior and processing maps of low-expansion GH909 superalloy

+ Author Affiliations
  • Corresponding author:

    Zhi-hao Yao    E-mail: zhihaoyao@ustb.edu.cn

  • Received: 11 October 2016Revised: 28 November 2016Accepted: 29 November 2016
  • The hot deformation behavior of GH909 superalloy was studied systematically using isothermal hot compression tests in a temperature range of 960 to 1040℃ and at strain rates from 0.02 to 10 s-1 with a height reduction as large as 70%. The relations considering flow stress, temperature, and strain rate were evaluated via power-law, hyperbolic sine, and exponential constitutive equations under different strain conditions. An exponential equation was found to be the most appropriate for process modeling. The processing maps for the superalloy were constructed for strains of 0.2, 0.4, 0.6, and 0.8 on the basis of the dynamic material model, and a total processing map that includes all the investigated strains was proposed. Metallurgical instabilities in the instability domain mainly located at higher strain rates manifested as adiabatic shear bands and cracking. The stability domain occurred at 960-1040℃ and at strain rates less than 0.2 s-1; these conditions are recommended for optimum hot working of GH909 superalloy.
  • loading
  • [1]
    T. Liu, F. Yan, S. Liu, R. Y. Li, C. M. Wang, and X. Y. Hu, Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy, Opt. Laser Technol., 80(2016), p. 56.
    [2]
    O. Covarrubias, O. Elizarraras, and R. Colas, Effect of heat treatment on mechanical properties of alloy 909, Mater. Sci. Technol., 27(2011), No. 6, p. 1092.
    [3]
    M. Balachander, K. R. Vishwakarma, and N. L. Richards, Over-aged metallography of alloy 909 a low coefficient of expansion superalloy, Mater. Sci. Technol., 28(2012), No. 3, p. 380.
    [4]
    F. Yan, R. Y. Li, J. M. Li, Y. J. Wang, C. M. Wang, and X. Y. Hu, The effect of aging heat treatment on microstructure and mechanical properties of laser welded joints of alloy GH909, Mater. Sci. Eng. A, 598(2014), p. 62.
    [5]
    X. Guo, K. Kusabiraki, and S. Saji, Intragranular precipitates in Incoloy alloy 909, Scripta Mater., 44(2001), No. 1, p. 55.
    [6]
    L. Z. Ma and K. M. Chang, Effects of different metallurgical processing on microstructures and mechanical properties of Inconel alloy 783, J. Mater. Eng. Perform., 13(2004), No. 1, p. 32.
    [7]
    X. C. Wang, Effect of forging process and heat treatment process on structure and properties of GH2909 alloy, Spec. Steel Technol., 19(2013), No. 2, p. 8.
    [8]
    Y. K. Gao, Y. X. Zhao, and Y. F. Yin, Study of recrystallization of low expansion superalloy GH909, Heat Treat. Met., 30(2005), No. 1, p. 77.
    [9]
    K. E. Tello, A. P. Gerlich, and P. F. Mendez, Constants for hot deformation constitutive models for recent experimental data, Sci. Technol. Weld. Joining, 15(2010), No. 3, p. 260.
    [10]
    Z. L. Zhao, H. Z. Guo, X. C. Wang, and Z. K. Yao, Deformation behavior of isothermally forged Ti-5Al-2Sn-2Zr-4Mo-4Cr powder compact, J. Mater. Process. Technol., 209(2009), p. 5509.
    [11]
    Y. Han, G. W. Liu, D. N. Zou, R. Liu, and G. J. Qiao, Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression, Mater. Sci. Eng. A, 565(2013), p. 342.
    [12]
    Y. J. Wang, G. Fang, J. H. Zhang, P. Zeng, X. G. Zhang, and G. Shi, Finite element simulation for the spinning process of an automobile spokes with varying thickness, Mater. Sci. Technol., 20(2012), No. 3, p. 103.
    [13]
    Z. Y. Ding, S. G. Jia, P. F. Zhao, M. Deng, and K. X. Song, Hot deformation behavior of Cu-0.6Cr-0.03Zr alloy during compression at elevated temperatures, Mater. Sci. Eng. A, 570(2013), p. 87.
    [14]
    E. S. Puchi-Cabrera, M. H. Staia, J. D. Guérin, J. Lesage, M. Dubar, and D. Chicot, Analysis of the work-hardening behavior of C-Mn steels deformed under hot-working conditions, Int. J. Plast., 51(2013), p. 145.
    [15]
    Y. D. Qu, M. M. Wang, L. M. Lei, X. Huang, L. Q. Wang, J. N. Qin, W. J. Lu, and D. Zhang, Behavior and modeling of high temperature deformation of an α+β titanium alloy, Mater. Sci. Eng. A, 555(2012), p. 99.
    [16]
    G. A. He, F. Liu, J. Y. Si, C. Yang, and L. Jiang, Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps, Mater. Des., 87(2015), p. 256.
    [17]
    Z. X. Shi, X. F. Yan, and C. H. Duan, Characterization of hot deformation behavior of GH925 superalloy using constitutive equation, processing map and microstructure observation, J. Alloys Compd., 652(2015), p. 30.
    [18]
    C. Y. Sun, G. Liu, Q. D. Zhang, R. Li, and L. L. Wang, Determination of hot deformation behavior and processing maps of IN 028 alloy using isothermal hot compression test, Mater. Sci. Eng. A, 595(2014), p. 92.
    [19]
    S. Wang, L. G. Hou, J. R. Luo, J. S. Zhang, and L. Z. Zhuang, Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map, J. Mater. Process. Technol., 225(2015), p. 110.
    [20]
    Q. Y. Yu, Z. H. Yao, and J. X. Dong, Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 83.
    [21]
    R. Baktash and H. Mirzadeh, A simple constitutive model for prediction of single-peak flow curves under hot working conditions, J. Eng. Mater. Technol., 138(2016), No. 2, p. 41.
    [22]
    S. L. Guo, D. F. Li, X. P. Wu, X. Q. Xu, P. Du, and J. Hu, Characterization of hot deformation behavior of a Zn-10.2Al-2.1Cu alloy using processing maps, Mater. Des., 41(2012), p. 158.
    [23]
    L. Zhang, Z. Li, Q. Lei, W. T. Qiu, and H. T. Luo, Hot deformation behavior of Cu-8.0Ni-1.8Si-0.15Mg alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1641.
    [24]
    C. Poletti, H. Dieringa, and F. Warchomicka, Local deformation and processing maps of as-cast AZ31 alloy, Mater. Sci. Eng. A, 516(2009), No. 1-2, p. 138.
    [25]
    W. Y. Kim, S. Hanada, and T. Takasugi, Flow behavior and microstructure of Co3Ti intermetallic alloy during superplastic deformation, Acta Mater., 46(1998), No. 10, p. 3593.
    [26]
    S. Spigarelli, M. E. Mehtedi, M. Cabibbo, F. Gabrielli, and D. Ciccarelli, High temperature processing of brass constitutive analysis of hot working of Cu-Zn alloys, Mater. Sci. Eng. A, 615(2014), p. 331.
    [27]
    X. S. Xia, Q. Chen, K. Zhang, Z. D. Zhao, M. L. Ma, X. G. Li, and Y. J. Li, Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy, Mater. Sci. Eng. A, 587(2013), p. 283.
    [28]
    H. J. McQueen and N. D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322(2002), No. 1-2, p. 43.
    [29]
    Y. C. Zhu, W. D. Zeng, F. Feng, Y. Sun, Y. F. Han, and Y. G. Zhou, Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1757.
    [30]
    A. Mohamadizadeh, A. Zarei-Hanzaki, and H. R. Abedi, Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters, Mech. Mater., 95(2016), p. 60.
    [31]
    H. L. Wei, G. Q. Liu, X. Xiao, and M. H. Zhang, Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel, Mater. Sci. Eng. A, 573(2013), p. 215.
    [32]
    D. X. Wen, Y. C. Lin, H. B. Li, X. M. Chen, J. D. Dong, and L. T. Li, Hot deformation behavior and processing map of a typical Ni-based superalloy, Mater. Sci. Eng. A, 591(2014), p. 183.
    [33]
    Y. H. Liu, Y. Q. Ning, Z. K. Yao, and H. Z. Guo, Hot deformation behavior of Ti-6.0Al-7.0Nb biomedical alloy by using processing map, J. Alloys Compd., 587(2014), p. 183.
    [34]
    Y. C. Lin, L. T. Li, Y. C. Xia, and Y. Q Jiang, Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy, J. Alloys Compd., 550(2013), p. 438.
    [35]
    Y. Sun, W. D. Zeng, Y. Q. Zhao, X. M. Zhang, Y. Shu, and Y. G. Zhou, Research on the hot deformation behavior of Ti40 alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1205.
    [36]
    J. Luo, M. Q. Li, H. Li, and W. X. Yu, Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 88.
    [37]
    D. Samantaray, S. Mandal, and A. K. Bhaduri, Characterization of deformation instability in modified 9Cr-1Mo steel during thermo-mechanical processing, Mater. Des., 32(2011), No. 2, p. 716.
    [38]
    A. DiSchino, J. M. Kenny, M. G. Mecozzi, and M. Barteri, Development of high nitrogen, low nickel, 18% Cr austenitic stainless steels, J. Mater. Sci., 35(2000), p. 4803.
    [39]
    H. Dehghan, S. M Abbasi, A. Momeni, and A. K. Taheri, On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy, J. Alloys Compd., 564(2013), p. 13.
    [40]
    S. F. Medina and C. A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Mater., 44(1996), p. 137.
    [41]
    L. X. Wang, G. Fang, M. A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing, J. Alloys Compd., 622(2015), p. 121.
    [42]
    J. Xiao, D. S. Li, X. Q. Li, and T. S. Deng, Constitutive modeling and microstructure change of Ti-6Al-4V during the hot tensile deformation, J. Alloys Compd., 541(2012), p. 346.
    [43]
    H. P. Li, L. F. He, G. Q. Zhao, and L. Zhang, Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson Cook model, Mater. Sci. Eng. A, 580(2013), p. 330.
    [44]
    Y. Q. Ning, Z. Yao, X. M. Liang, and Y. H. Liu, Flow behavior and constitutive model for Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al superalloy compressed below γ'transus temperature, Mater. Sci. Eng. A, 551(2012), p. 7.
    [45]
    X. S. Xia, Q. Chen, S. H. Huang, J. Lin, C. K. Hu, and Z. D. Zhao, Hot deformation behavior of extruded Mg-Zn-Y-Zr, J. Alloys Compd., 644(2015), p. 308.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(387) PDF Downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return