Zhi-yuan Chen, Liu-zhen Bian, Li-jun Wang, Zi-you Yu, Hai-lei Zhao, Fu-shen Li,  and Kuo-chih Chou, Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850℃, Int. J. Miner. Metall. Mater., 24(2017), No. 5, pp. 574-583. https://doi.org/10.1007/s12613-017-1439-9
Cite this article as:
Zhi-yuan Chen, Liu-zhen Bian, Li-jun Wang, Zi-you Yu, Hai-lei Zhao, Fu-shen Li,  and Kuo-chih Chou, Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850℃, Int. J. Miner. Metall. Mater., 24(2017), No. 5, pp. 574-583. https://doi.org/10.1007/s12613-017-1439-9
Research Article

Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850℃

+ Author Affiliations
  • Corresponding author:

    Li-jun Wang    E-mail: lijunwang@ustb.edu.cn

  • Received: 12 September 2016Revised: 14 December 2016Accepted: 16 December 2016
  • The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800℃ in a pure methane atmosphere. The topography, properties, and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy (FESEM), temperature-programmed oxidation (TPO) technology, X-ray diffraction (XRD), and Raman spectroscopy. The deposited carbon is present in the form of a film at 400-450℃, as fibers at 500-600℃, and as particles at 650-800℃. In addition, the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature, whereas the intensity ratio between the D bands and the G band decreases. An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range (M-T range) and the corresponding kinetic mechanism changes. Correspondingly, the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2, D3, and D4 bands decrease to low limits in the M-T range. These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature. Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.
  • loading
  • [1]
    M.N. Pérez-Camacho, J. Abu-Dahrieh, A. Goguet, K.N. Sun, and D. Rooney, Self-cleaning perovskite type catalysts for the dry reforming of methane, Chin. J. Catal., 35(2014), No.8, p. 1337.
    [2]
    J. Kuhn and O. Kesler, Method for in situ carbon deposition measurement for solid oxide fuel cells, J. Power Sources, 246(2014),p. 430.
    [3]
    M. Yoshinaga, H. Kishimoto, M.E. Brito, K. Yamaji, T. Horita, and H. Yokokawa, Carbon deposition map for nickel particles onto oxide substrates analyzed by micro-Raman spectroscopy, J. Ceram. Soc. Jpn., 119(2011), No.1388, p. 307.
    [4]
    T. Chen, W.G. Wang, H. Miao, T.S. Li, and C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, J. Power Sources, 196(2011), No.5, p. 2461.
    [5]
    E.D. German and M. Sheintuch, Predicting CH4 dissociation kinetics on metals:trends, sticking coefficients, H tunneling, and kinetic isotope effect, J. Phys. Chem. C, 117(2013), No.44, p. 22811.
    [6]
    W.W. Ma, Z.P. Zhou, G. Li, and P. Li, Effect of catalyst film thickness on growth morphology, surface wettability and drag reduction property of carbon nanotubes, High Temp. Mater. Processes, 35(2016), No. 9, p. 857.
    [7]
    C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane, Catal. Today, 46(1998), No.2-3, p. 137.
    [8]
    I. Alstrup, M.T. Tavares, C.A. Bernardo, O. Sørensen, and J.R. Rostrup-Nielsen, Carbon formation on nickel and nickel-copper alloy catalysts, Mater. Corros., 49(1998), No. 5, p. 367.
    [9]
    P.E. Nolan, D.C. Lynch, and A.H. Cutler, Carbon deposition and hydrocarbon formation on group VⅢ metal catalysts, J. Phys. Chem. B, 102(1998), No. 21, p. 4165.
    [10]
    M.L. Toebes, J.H. Bitter, A.J.V. Dillen, and K.P.D. Jong, Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers, Catal. Today, 76(2002), No.1, p. 33.
    [11]
    C. Su, R. Ran, W. Wang, and Z.P. Shao, Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel, J. Power Sources, 196(2011), No.4, p. 1967.
    [12]
    G.G. Kuvshinov, Y.I. Mogilnykh, D.G. Kuvshinov, V.I. Zaikovskii, and L.B. Avdeeva, Peculiarities of filamentous carbon formation in methane decomposition on Ni-containing catalysts, Carbon, 36(1998), No.1-12, p. 87.
    [13]
    Y.D. Li, J.L. Chen, Y.N. Qin, and L. Chang, Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst, Energy Fuels, 14(2000), No.6, p. 1188.
    [14]
    K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, K.I. Ishii, and M. Inoue, Mechanisms of methane decomposition over Ni catalysts at high temperatures, J. Jpn. Pet. Inst., 51(2008), No.1,p. 42.
    [15]
    J.L. Figueiredo, Carbon deposition leading to filament growth on metals, Mater. Corros., 49(1998), No.5, p. 373.
    [16]
    M. Inoue, K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, and K.I. Ishii, Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600-750℃, Diamond Relat. Mater., 17(2008), No.7-10, p. 1471.
    [17]
    J. Rostrup-Nielsen and D.L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts, J. Catal., 48(1977), No.1-3, p. 155.
    [18]
    Y.Z. Wang, F. Yoshiba, M. Kawase, and T. Watanabe, Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC, Int. J. Hydrogen Energy, 34(2009), No.9, p. 3885.
    [19]
    K.H. Hou and R. Hughes, The kinetics of methane steam reforming over a Ni/α-Al2O3 catalyst, Chem. Eng. J., 82(2001), No.1-3, p. 311.
    [20]
    J.G. Xu and G.F. Froment, Methane steam reforming, methanation and water-gas shift:I. Intrinsic kinetics, AIChE J., 35(1989), No.1, p. 88.
    [21]
    H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, and J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209(2002), No.2, p. 365.
    [22]
    N.M. Rodriguez, M.S. Kim, F. Fortin, I. Mochida, and R.T.K. Baker, Carbon deposition on iron-nickel alloy particles, Appl. Catal. A, 148(1997), No.2, p. 265.
    [23]
    C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, and Z.P. Shao, Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 195(2010), No.5, p. 1333.
    [24]
    J. Shi and O. Nittono, Formation of Ni3C nanocrystallites in codeposited Ni-C films, J. Mater. Sci. Lett., 15(1996), No.11, p. 928.
    [25]
    R.P.W.J. Struis, D. Bachelin, C. Ludwig, and A. Wokaun, Studying the formation of Ni3C from Co and metallic Ni at T=265℃ in situ using Ni K-edge X-ray absorption spectroscopy, J. Phys. Chem. C, 113(2009), No.6, p. 2443.
    [26]
    F. Banhart, Interactions between metals and carbon nanotubes:at the interface between old and new materials, Nanoscale, 1(2009), No.2, p. 201.
    [27]
    K.P.D. Jong and J.W. Geus, Carbon nanofibers:catalytic synthesis and applications, Catal. Rev., 2(2000), No.4, p. 481.
    [28]
    C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007), No.15, p. 2316.
    [29]
    H. Bakhshi, A. Shokuhfar, and N. Vahdati, Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles, Int. J. Miner. Metall. Mater., 23(2016), No.9, p. 1104.
    [30]
    Y.G. Shi, Y. Hao, D. Wang, J.C. Zhang, P. Zhang, X.F. Shi, D. Han, Z. Chai, and J.D. Yan, Effects of the flow rate of hydrogen on the growth of graphene, Int. J. Miner. Metall. Mater., 22(2015), No.1, p. 102.
    [31]
    R.C. Maher, V. Duboviks, G.J. Offer, M. Kishimoto, N.P. Brandon, and L.F. Cohen, Raman spectroscopy of solid oxide fuel cells:technique overview and application to carbon deposition analysis, Fuel Cells, 13(2013), No.4, p. 455.
    [32]
    Z.Y. Wu, S.Q. Hu, and Z.Q. Wang, Simple method to rapidly fabricate chain-like carbon nanotube films and its field emission properties, Int. J. Miner. Metall. Mater., 17(2010), No.3, p. 371.
    [33]
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information, Carbon, 43(2005), No.8, p. 1731.
    [34]
    A. Zaida, E. Bar-Ziv, L.R. Radovic, and Y.J. Lee, Further development of Raman microprobe spectroscopy for characterization of char reactivity, Proc. Combust. Inst., 31(2007), No. 2, p. 1881.
    [35]
    R.J. Nemanich and S.A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B, 20(1979), No.2, p. 392.
    [36]
    F. Li and J.S. Lannin, Disorder induced Raman scattering of nanocrystalline carbon, Appl. Phys. Lett., 61(1992), No.17, p. 2116.
    [37]
    W.S. Bacsa, J.S. Lannin, D.L. Pappas, and J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon, Phys. Rev. B, 47(1993), No.16, p. 10931.
    [38]
    X.F. Li, A. Dhanabalan, and C.L. Wang, Enhanced electrochemical performance of porous NiO-Ni nanocomposite anode for lithium ion batteries, J. Power Sources, 196(2011), No.22, p. 9625.
    [39]
    J. Pérez-Ramı́rez, G. Mul, and J.A. Moulijn, In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co-Al and Ni-Al hydrotalcites, Vib. Spectrosc., 27(2001), No.1, p. 75.
    [40]
    A.L. Pinheiro, A.N. Pinheiro, A. Valentini, J.M. Filho, F.F.D. Sousa, J.R.D. Sousa, M.D.G.C. Rocha, P. Bargiela, and A.C. Oliveira, Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane, Catal. Commun., 11(2009), No.1, p. 11.
    [41]
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409(2005), No.2, p. 47.
    [42]
    Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Raman spectroscopy of carbon materials:structural basis of observed spectra, Chem. Mater., 2(1990), No.5, p. 557.
    [43]
    A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000), No. 20, p. 14095.
    [44]
    S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philos. Trans. R. Soc. London Ser. A, 362(2004), No. 1824, p. 2271.
    [45]
    D.S. Knight and W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4(1989), No. 2, p. 385.
    [46]
    C. Casiraghi, A.C. Ferrari, and J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, Phys. Rev. B, 72(2005), No. 8, p. 085401.
    [47]
    T.C. Chieu, M.S. Dresselhaus, and M. Endo, Raman studies of benzene-derived graphite fibers, Phys. Rev. B, 26(1982), No. 10, p. 5867.
    [48]
    B. Manoj and A.G. Kunjomana, Chemical leaching of an Indian bituminous coal and characterization of the products by vibrational spectroscopic techniques, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 279.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(638) PDF Downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return