Cite this article as: |
Adam Khan Mahaboob Basha, Sundarrajan Srinivasan, and Natarajan Srinivasan, Studies on thermally grown oxide as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp. 681-690. https://doi.org/10.1007/s12613-017-1451-0 |
Adam Khan Mahaboob Basha E-mail: adamkhanm@gmail.com
[1] |
S. Kamal, R. Jayaganthan, and S. Prakash, Hot corrosion studies of detonation-gun-sprayed nicraly+0.4wt% CeO2 coated superalloys in molten salt environment, J. Mater. Eng. Perform., 20(2011), No. 6, p. 1068.
|
[2] |
C. Che, G.Q. Wu, H.Y. Qi, Z. Huang, and X.G. Yang, Effect of bond coat surface roughness on oxidation behaviour of air plasma sprayed thermal barrier coatings, Surf. Eng., 24(2008), No. 4, p. 276.
|
[3] |
Y. Wang, M.X. Li, and H.L. Suo, Mechanical properties of YSZ thermal barrier coatings with segmented structure, Surf. Eng., 28(2012), No. 5, p. 329.
|
[4] |
X. Ren, F.H. Wang, and X. Wang, High-temperature oxidation and hot corrosion behaviors of the NiCr-CrAl coating on a nickel-based superalloy, Surf. Coat. Technol., 198(2005), No. 1-3, p. 425.
|
[5] |
R.A. Mahesh, R. Jayaganthan, and S. Prakash, High temperature oxidation studies on HVOF sprayed NiCrAl coatings on superalloys, Surf. Eng., 27(2011), No. 5, p. 332.
|
[6] |
R.A. Mahesh, R. Jayaganthan, and S. Prakash, Evaluation of hot corrosion behaviour of HVOF sprayed Ni-5Al and NiCrAl coatings in coal fired boiler environment, Surf. Eng., 26(2010), No. 6, p. 413.
|
[7] |
X.Y. Xie, H.B. Guo, S.K. Gong, and H.B. Xu, Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings, Chin. J. Aeronaut., 25(2012), No. 1, p. 137.
|
[8] |
G. Kaushal, N. Kaur, H. Singh, and S. Prakash, Effect of zirconium addition in HVOF sprayed Ni-20Cr coating, Surf. Eng., 29(2013), No. 1, p. 46.
|
[9] |
S. Matthews, B. James, and M. Hyland, High temperature erosion-oxidation of Cr3C2-NiCr thermal spray coatings under simulated turbine conditions, Corros. Sci., 70(2013), p. 203.
|
[10] |
D.S. Balint and J.W. Hutchinson, An analytical model of rumpling in thermal barrier coatings, J. Mech. Phys. Solids, 53(2005), No. 4, p. 949.
|
[11] |
M.W. Chen, R.T. Ott, T.C. Hufnagel, P.K. Wright, and K.J. Hemker, Microstructural evolution of platinum modified nickel aluminide bond coat during thermal cycling, Surf. Coat. Technol., 163-164(2003), No. 29, p. 25.
|
[12] |
H.B. Zhao, Z. Yu, and H.N.G. Wadley, The influence of coating compliance on the delamination of thermal barrier coatings, Surf. Coat. Technol., 204(2010), No. 15, p. 2432.
|
[13] |
R. McPherson, A review of microstructure and properties of plasma sprayed ceramic coatings, Surf. Coat. Technol., 39-40(1989), p. 173.
|
[14] |
I.A. Mahmood, W.W. Jameel, and L.A. Khaleel, Improved oxidation resistance for thermal barrier ceramic coating protect, Int. J. Res. Eng. Technol., 1(2013), No. 5, p. 77.
|
[15] |
A. Rico, J. Rodríguez, and E. Otero, High temperature oxidation behaviour of nanostructured alumina-titania APS coatings, Oxid. Met., 73(2010), No. 5, p. 531.
|
[16] |
L.J. Zhu, S.L. Zhu, and F.H. Wang, Hot corrosion behaviour of a Ni+CrAlYSiN composite coating in Na2SO4-25 wt% NaCl melt, Appl. Surf. Sci., 268(2013), No. 1, p. 103.
|
[17] |
M. Daroonparvar, M.A.M. Yajid, N.M. Yusof, and M.S. Hussain, Improved thermally grown oxide scale in air plasma sprayed NiCrAlY/Nano-YSZ coatings, J. Nanomater., 2013(2013), art. No. 520104.
|
[18] |
L.Y. Ni, C. Liu, H. Huang, and C.G. Zhou, Thermal cycling behaviour of thermal barrier coatings with HVOF NiCrAlY bond coat, J. Therm. Spray Technol., 20(2011), No. 5, p. 1133.
|
[19] |
H.B. Xu, H.B. Guo, F.S. Liu, and S.K. Gong, Development of gradient thermal barrier coatings and their hot-fatigue behavior, Surf. Coat. Technol., 130(2000), No. 1, p. 133.
|
[20] |
V.K. Tolpygo and D.R. Clarke, Surface rumpling of a (Ni,Pt) Al bond coat induced by cyclic oxidation, Acta Mater., 48(2000), No. 13, p. 3283.
|
[21] |
Z.L. Tang, F.H. Wang, and W.T. Wu, Effect of Al2O3 and enamel coatings on 900℃ oxidation and hot corrosion behaviors of gamma-TiAl, Mater. Sci. Eng. A, 276(2000), No. 1-2, p. 70.
|
[22] |
I. Gurrappa and A.S. Rao, Thermal barrier coatings for enhanced efficiency of gas turbine engines, Surf. Coat. Technol., 201(2006), No. 6, p. 3016.
|
[23] |
I. Gurrappa, I.V.S. Yashwanth, and A.K. Gogia, The behaviour of superalloys in marine gas turbine engine conditions, J. Surf. Eng. Mater. Adv. Technol., 1(2011), No. 3, p. 144.
|
[24] |
J.R. Blachere and F.S. Pettit, High Temperature Corrosion of Ceramics, William Andrew Publishing, USA, 1989, p. 89.
|
[25] |
X. Huang, P. Puetz, Q. Yang, and Z. Tang, Characterisation of transient oxide formation on NiCrAlY after heat treatment in vacuum, Surf. Eng., 27(2011), No. 5, p. 368.
|
[26] |
A. Rahman, R. Jayaganthan, S. Prakash, V. Chawla, and R. Chandra, Cyclic high temperature oxidation behaviour of sputtered Cr/Al multilayer coatings on superalloy, Surf. Eng., 27(2011), No. 5, p. 393.
|
[27] |
S. Kamal, R. Jayaganthan, and S. Prakash, Hot corrosion behaviour of D-gun sprayed NiCoCrAlYTa coated superalloys at 900℃ in molten salt environment, Surf. Eng., 26(2010), No. 6, p. 453.
|
[28] |
J.R. Davis, Nickel, Cobalt, and Their Alloys, ASM International, Materials Park, Ohio, 2000, p. 14.
|
[29] |
H.C. Graham and H.H. Davis, Oxidation/vaporization kinetics of Cr2O3, J. Am. Ceram. Soc., 54(1971), No. 2, p. 89.
|
[30] |
M.H. Guo, Q.M. Wang, P.L. Ke, J. Gong, C. Sun, R.F. Huang, and L.S. Wen, The preparation and hot corrosion resistance of gradient NiCoCrAlYSiB coatings, Surf. Coat. Technol., 200(2006), No. 12-13, p. 3942.
|
[31] |
M. Qiao and C.G. Zhou, Hot corrosion behavior of Co modified NiAl coating on nickel base superalloys, Corros. Sci., 63(2012), p. 239.
|
[32] |
X.S. Zhao and C.G. Zhou, Effect of Y2O3 content in the pack on microstructure and hot corrosion resistance of Y-Co-modified aluminide coating, Corros. Sci., 86(2014), p. 223.
|
[33] |
H.Y. He, Z.J Liu, W. Wang, and C.G. Zhou, Microstructure and hot corrosion behavior of Co-Si modified aluminide coating on nickel based superalloys, Corros. Sci., 100(2015), p. 466.
|
[34] |
Y.W. Pei and C.G. Zhou, Improved hot corrosion resistance of Dy-Co-modified aluminide coating by pack cementation process on nickel base superalloys, Corros. Sci., 112(2016), p. 710.
|
[35] |
D.W. McKee, D.A. Shore, and K.L. Lurthra, The effect of SO2 and NaCl on high temperature hot corrosion, J. Electrochem. Soc., 125(1978), No. 3, p. 411.
|
[36] |
M.K. Hossain and S.R.J. Saunders, A microstructural study of the influence of NaCl vapor on the oxidation of a Ni-Cr-Al alloy at 850℃, Oxid. Met., 12(1978), No. 1, p. 1.
|
[37] |
L.A. Klinkova and E.A. Ukshe, Solution of corundum in fused vanadates, Russ. J. Inorg. Chem., 20(1975), No. 2, p. 799.
|
[38] |
P.S. Sidky and M.G. Hocking, The hot corrosion of Ni-based ternary alloys and superalloys for application in gas turbines employing residual fuels, Corros. Sci., 27(1987), No. 5, p. 499.
|