R. Mahendran, S. P. Kumaresh Babu, S. Natarajan, S. Manivannan, and A. Vallimanalan, Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 842-849. https://doi.org/10.1007/s12613-017-1468-4
Cite this article as:
R. Mahendran, S. P. Kumaresh Babu, S. Natarajan, S. Manivannan, and A. Vallimanalan, Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 842-849. https://doi.org/10.1007/s12613-017-1468-4
Research Article

Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders

+ Author Affiliations
  • Corresponding author:

    R. Mahendran    E-mail: mahendran.meta@gmail.com

  • Received: 13 December 2016Revised: 20 January 2017Accepted: 15 February 2017
  • Nanocrystalline powders of ZrO2-8mol%SmO1.5(8SmSZ), ZrO2-8mol%GdO1.5 (8GdSZ), and ZrO2-8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467℃ in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000℃ for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.
  • loading
  • [1]
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science, 296(2002), No. 5566, p. 280.
    [2]
    D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines, MRS Bull., 37(2012), No. 10, p. 891.
    [3]
    Y.L. Zhang, L. Guo, Y.P. Yang, H.B. Guo, H.J. Zhang, and S.K. Gong, Influence of Gd2O3 and Yb2O3 Co-doping on phase stability, thermo-physical properties and sintering of 8YSZ, Chin. J. Aeronaut., 25(2012), No. 6, p. 948.
    [4]
    J. Feng, X.R. Ren, X.Y. Wang, R. Zhou, and W. Pan, Thermal conductivity of ytterbia-stabilized zirconia, Scripta Mater., 66(2012), No. 1, p. 41.
    [5]
    L.L. Sun, H.B. Guo, H. Peng, S.K. Gong, and H.B. Xu, Influence of partial substitution of Sc2O3 with Gd2O3 on the phase stability and thermal conductivity of Sc2O3-doped ZrO2, Ceram. Int., 39(2013), No. 3, p. 3447.
    [6]
    H.F. Liu, S.L. Li, Q.L. Li, and Y.M. Li, Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application, Mater. Des., 31(2010), No. 6, p. 2972.
    [7]
    Q.L. Li, X.Z. Cui, S.Q. Li, W.H. Yang, C. Wang, and Q. Cao, Synthesis and phase stability of scandia, gadolinia, and ytterbia Co-doped zirconia for thermal barrier coating application, J. Therm. Spray Technol., 24(2015), No. 1, p. 136.
    [8]
    D.M. Zhu, Y.L. Chen, and R.A. Miller, Defect clustering and nanophase structure characterization of multi-component rare earth-oxide-doped zirconia-yttria thermal barrier coatings, Ceram. Eng. Sci. Proc., 24(2003), No. 3, p. 525.
    [9]
    M.B. Ponnuchamy and A.S. Gandhi, Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides, J. Eur. Ceram. Soc., 35(2015), No. 6, p. 1879.
    [10]
    Y.J. Zhou, W.H. Yuan, Q.L. Huang, W.Z. Huang, H.F. Cheng, and H.T. Liu, Effect of Y2O3 addition on the phase composition and crystal growth behavior of YSZ nanocrystals prepared via coprecipitation process, Ceram. Int., 41(2015), No. 9, p. 10702.
    [11]
    C.W. Kuo, Y.H. Shen, I.M. Hung, S.B. Wen, H.E. Lee, and M.C. Wang, Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process, J. Alloys Compd., 472(2009), No. 1-2, p. 186.
    [12]
    S.G. Chen, Y.S. Yin, D.P. Wang, and J. Li, Reduced activation energy and crystalline size for yttria-stabilized zirconia nano-crystals:an experimental and theoretical study, J. Cryst. Growth, 267(2004), No. 1-2, p. 100.
    [13]
    Y.H. Lee, C.W. Kuo, I.M. Hung, K.Z. Fung, and M.C. Wang, The thermal behavior of 8mol% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process, J. Non-Cryst. Solids, 351(2005), No. 49, p. 3709.
    [14]
    H.L. Chu, W.S. Hwang, J.K. Du, K.K. Chen, and M.C. Wang, Effect of SrO addition on the growth behavior of ZrO2-3Y2O3 precursor powders synthesized by a coprecipitation process, Ceram. Int., 42(2016), No. 8, p. 10251.
    [15]
    A. Loganathan and A.S. Gandhi, Fracture toughness of t' ZrO2 stabilised with MO1.5(M=Y, Yb&Gd) for thermal barrier application, Trans. Indian Inst. Met., 64(2011), No. 1, p. 71.
    [16]
    Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, and S.K. Date, Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route, Mater. Chem. Phys., 71(2001), No. 3, p. 235.
    [17]
    Isabel Gonzalo, B. Ferrari, and M.T. Colomer, Influence of the urea content on the YSZ hydrothermal synthesis under dilute conditions and its role as dispersant agent in the post-reaction medium, J. Eur. Ceram. Soc., 29(2009), No. 15, p. 3185.
    [18]
    Q.L. Huang, W.H. Yuan, W.Z. Huang, H.F. Cheng, Y.J. Zhou, and H.T. Liu, Effect of organic additions on the phase composition and crystal growth behavior of 8wt% yttria-stabilized zirconia nanocrystals prepared via sol-gel process, J. Sol-Gel Sci. Technol., 74(2015), No. 2, p. 432.
    [19]
    C. Suciu, A.C. Hoffmann, A. Vik, and F. Goga, Effect of calcination conditions and precursor proportions on the properties of YSZ nanoparticles obtained by modified sol-gel route, Chem. Eng. J., 138(2008), No. 1-3, p. 608.
    [20]
    J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vázquez, A. Garcia-Ruiz, and X. Bokhimi, Comparative study of nanocrystalline zirconia prepared by precipitation and sol-gel methods, Catal. Today, 68(2001), No. 1-3, p. 21.
    [21]
    P.K. Sharma, R. Nass, and H. Schmidt, Effect of solvent, host precursor, dopant concentration and crystallite size on the fluorescence properties of Eu (Ⅲ) doped yttria, Opt. Mater., 10(1998), No. 2, p. 161.
    [22]
    K. Richardson and M. Akinc, Preparation of spherical yttrium oxide powders using emulsion evaporation, Ceram. Int., 13(1987), No. 4, p. 253.
    [23]
    T. Lopez, E. Sanchez, P. Bosch, Y. Meas, and R. Gomez, FTIR and UV-Vis (diffuse reflectance) spectroscopic characterization of TiO2 sol-gel, Mater. Chem. Phys., 32(1992), No. 2, p. 141.
    [24]
    H.E. Lee, J.K. Du, Y.Y. Sie, C.H. Wang, J.H. Wu, C.L. Wang, W.S. Hwang, H.H. Huang, W.L. Li, and M.C. Wang, Thermal properties and phase transformation of 2mol% Y2O3-PSZ nanopowders prepared by a Co-precipitation process, J. Non-Cryst. Solids, 357(2011), No. 10, p. 2103.
    [25]
    S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia, Nano Lett., 3(2003), No. 3, p. 397.
    [26]
    S.M. Ho, On the structural chemistry of zirconium oxide, Mater. Sci. Eng., 54(1982), No. 1, p. 23.
    [27]
    Y.W. Hsu, K.H. Yang, K.M. Chang, S.W. Yeh, and M.C. Wang, Synthesis and crystallization behavior of 3mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd., 509(2011), No. 24, p. 6864.
    [28]
    T. Chraska, A.H. King, and C.C. Berndt, On the size-dependent phase transformation in nanoparticulate zirconia, Mater. Sci. Eng. A, 286(2000), No. 1, p. 169.
    [29]
    R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Ceramic steel?, Nature, 258(1975), p. 703.
    [30]
    D.J. Kim, H.J. Jung, and I.S. Yang, Raman spectroscopy of tetragonal zirconia solid solution, J. Am. Ceram. Soc., 76(1993), No. 8, p. 2106.
    [31]
    L. Qu and K.L. Choy, Thermophysical and thermochemical properties of new thermal barrier materials based on Dy2O3-Y2O3 co-doped zirconia, Ceram. Int., 40(2014), No. 8, p. 11593.
    [32]
    X.Q. Niu, M. Xie, F. Zhou, R.D. Mu, X.W. Song, and S.L. An, Substituent influence of yttria by gadolinia on the tetragonal phase stability for Y2O3-Ta2O5-ZrO2 ceramics at 1300℃, J. Mater. Sci. Technol., 30(2014), No. 4, p. 381.
    [33]
    A.M. Limarga, J. Iveland, M. Gentleman, D.M. Lipkin, and D.R. Clarke, The use of Larson-Miller parameters to monitor the evolution of Raman lines of tetragonal zirconia with high temperature aging, Acta Mater., 59(2011), No. 3, p. 1162.
    [34]
    C.H. Wang, M.C. Wang, J.K. Du, Y.Y. Sie, C.S. Hsi, and H.E. Lee, Phase transformation and nanocrystallite growth behavior of 2mol% yttria-partially stabilized zirconia (2Y-PSZ) powders, Ceram. Int., 39(2013), No. 5, p. 5165.
    [35]
    C.W. Kuo, K.C. Lee, F.L. Yen, Y.H. Shen, H.E. Lee, S.B. Wen, M.C. Wang, and M.M. Stack, Growth kinetics of tetragonal and monoclinic ZrO2 crystallites in 3mol% yttria partially stabilized ZrO2(3Y-PSZ) precursor powder, J. Alloys Compd., 592(2014), p. 288.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(533) PDF Downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return