Anna Nocivin, Ion Cinca, Doina Raducanu, Vasile Danut Cojocaru, and Ion Alexandru Popovici, Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, pp. 909-917. https://doi.org/10.1007/s12613-017-1477-3
Cite this article as:
Anna Nocivin, Ion Cinca, Doina Raducanu, Vasile Danut Cojocaru, and Ion Alexandru Popovici, Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, pp. 909-917. https://doi.org/10.1007/s12613-017-1477-3
Research Article

Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy

+ Author Affiliations
  • Corresponding author:

    Ion Cinca    E-mail: ion.cinca@upb.ro

  • Received: 18 November 2016Revised: 30 March 2017Accepted: 31 March 2017
  • A new Gum-type alloy (Ti-Nb-Zr-Fe-O) in which Fe is used instead of Ta was subjected to a particular thermomechanical processing scheme to assess whether its mechanical characteristics (fine β-grains with high strength and low modulus) render it suitable as a biomedical implant material. After a homogenization treatment followed by cold-rolling with 50% reduction, the specimens were subjected to one of three different recrystallization treatments at 1073, 1173, and 1273 K. The structural and mechanical properties of all of the treated specimens were analyzed. The mechanical characterization included tensile tests, microhardness determinations, and fractography by scanning electron microscopy. The possible deformation mechanisms were discussed using the Bo-Md diagram. By correlating all of the experimental results, we concluded that the most promising processing variant corresponds to recrystallization at 1073 K, which can provide suitable mechanical characteristics for this type of alloys:high yield and ultimate tensile strengths (1038 and 1083 MPa, respectively), a low modulus of elasticity (62 GPa), and fine crystalline grain size (approximately 50 μm).
  • loading
  • [1]
    N. Nagasako, R. Asahi, D. Isheim, D.N. Seidman, S. Kuramoto, and T. Furuta, Microscopic study of gum-metal alloys:A role of trace oxygen for dislocation-free deformation, Acta Mater., 105(2016), p. 347.
    [2]
    M. Abdel-Hady Gepreel and M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, J. Mech. Behav. Biomed. Mater., 20(2013), p. 407.
    [3]
    M. Besse, P. Castany, and T. Gloriant, Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys:A comparative study on the oxygen influence, Acta Mater., 59(2011), No. 15, p. 5982.
    [4]
    H.P. Duan, H.X. Xu, W.H. Su, Y.B. Ke, Z.Q. Liu, and H.H. Song, Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1128.
    [5]
    M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, Effect of oxygen content on microstructure and mechanical properties of biomedical Ti-29Nb-13Ta-4.6Zr alloy under solutionized and aged conditions, Mater. Trans., 50(2009), No. 12, p. 2716.
    [6]
    D.M. Gordin, R. Ion, C. Vasilescu, S.I. Drob, A. Cimpean, and T. Gloriant, Potentiality of the"Gum Metal"titanium-based alloy for biomedical applications, Mater. Sci. Eng. C, 44(2014), p. 362
    [7]
    L.S. Wei, H.Y. Kim, and S. Miyazaki, Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys, Acta Mater., 100(2015), p. 313.
    [8]
    F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini, The Influence of small quantities of oxygen in the structure, microstructure, hardness, elasticity modulus and cytocompatibility of Ti-Zr alloys for dental applications, Materials, 7(2014), No. 1, p. 542.
    [9]
    Q.Q. Wei, L.Q. Wang, Y.F. Fu, J.N. Qin, W.J. Lu, and D. Zhang, Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy, Mater. Des., 32(2011), No. 5, p. 2934.
    [10]
    M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti-Nb alloy, J. Alloys Compd., 577(2013), Supp. 1, p. S404.
    [11]
    J.I. Kim, H.Y. Kim, H. Hosoda, and S. Miyazaki, Shape memory behavior of Ti-22Nb-(0.5-2.0) O (at.%) biomedical alloys, Mater. Trans., 46(2005), No. 4, p. 852.
    [12]
    A. Biesiekierski, J.X. Lin, Y.C. Li, D.H. Ping, Y. Yamabe-Mitarai, and C.E. Wen, Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical applications, Acta Biomater., 32(2016), p. 336.
    [13]
    K.Y. Xie, Y.B. Wang, Y.H. Zhao, L. Chang, G.C. Wang, Z.B. Chen, Y. Cao, X.Z. Liao, E.J. Lavernia, R.Z. Valiev, B. Sarrafpour, H. Zoellner, and S. Ringer, Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications, Mater. Sci. Eng. C, 33(2013), No. 6, p. 3530.
    [14]
    Y.H. Li, C. Yang, H.D. Zhao, S.G. Qu, X.Q. Li, and Y.Y. Li, New developments of Ti-based alloys for biomedical applications, Materials, 7(2014), No. 3, p. 1709.
    [15]
    M. Abdel-Hady Gepreel, Improved elasticity of new Ti-alloys for biomedical applications, Mater. Today, 2(2015), p. S979.
    [16]
    A.H. Guo, W.F. Cui, X.H. Liu, F.S. Zhang, and L. Zhou, Microstructures and mechanical properties of metastable β type TiNbZrFe alloys for biomedical application, J. Mater. Metall., 7(2008), No. 4, p. 288.
    [17]
    Y.F. Zheng, R.E.A. Williams, S. Nag, R. Banerjee, H.L. Fraser, and D. Banerjee, The effect of alloy composition on instabilities in the β phase of titanium alloys, Scripta Mater., 116(2016), p. 49.
    [18]
    D. Kent, G. Wang, and M. Dargusch, Effects of phase stability and processing on the mechanical properties of Ti-Nb based β Ti alloys, J. Mech. Behav. Biomed. Mater., 28(2013), p. 15.
    [19]
    M. Abdel-Hady, K. Hinoshita, and M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Mater., 55(2006), No. 5, p. 477.
    [20]
    Q.K. Meng, Q. Liu, S. Guo, Y.Q. Zhu, and X.Q. Zhao, Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti-36Nb-5Zr alloy, Prog. Nat. Sci., 25(2015), No. 3, p. 229.
    [21]
    M. Popa, E. Vasilescu, P. Drob, D. Raducanu, J.M. Calderon Moreno, S. Ivanescu, C. Vasilescu, and S.I. Drob, Microstructure, mechanical, and anticorrosive properties of a new Ti-20Nb-10Zr-5Ta alloy based on nontoxic and nonallergenic elements, Met. Mater. Int., 18(2012), No. 4, p. 639.
    [22]
    S. Kuramoto, T. Furuta, J. Hwang, K. Nishino, and T. Saito, Elastic properties of Gum Metal, Mater. Sci. Eng. A, 442(2006), No. 1-2, p. 454.
    [23]
    S.E. Kim, H.W. Jeong, Y.T. Hyun, Y.T. Lee, C.H. Jung, S.K. Kim, J.S. Song, and J.H. Lee, Elastic modulus and in vitro biocompatibility of Ti-xNb and Ti-xTa alloys, Met. Mater. Int., 13(2007), p. 145.
    [24]
    H.J. Rack and J.I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C, 26(2006), No. 8, p. 1269.
    [25]
    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants-A review, Prog. Mater. Sci., 54(2009), No. 3, p. 397.
    [26]
    V.R. Jablokov, N.G.D. Murray, H.J. Rack, and H.L. Freese, Influence of oxygen content on the mechanical properties of titanium-35niobium-7zirconium-5tantalum beta titanium alloy, J. ASTM Int., 2(2005), No. 8, p. 1.
    [27]
    W.F. Cui and A.H. Guo, Microstructure and properties of biomedical TiNbZrFe β-titanium alloy under aging conditions, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 258.
    [28]
    W.F. Cui, A.H. Guo, L. Zhou, and C.M. Liu, Crystal orientation dependence of Young's modulus in Ti-Nb-based β-titanium alloy, Sci. China Technol. Sci., 53(2010), No. 6, p. 1513.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(433) PDF Downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return