Cite this article as: |
Lin Liu, Xin-da Wang, Xiang Li, Xiao-tong Qi, and Xuan-hui Qu, Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 1021-1026. https://doi.org/10.1007/s12613-017-1491-5 |
Lin Liu E-mail: liulin@cumtb.edu.cn
[1] |
D.W. Deng, R. Chen, Q. Sun, and X.N. Li, Microstructural study of 17-4PH stainless steel after plasma-transferred arc welding, Material, 8(2015), No. 2, p. 424.
|
[2] |
H.Z. Ye, X.Y. Liu, and H.P. Hong, Sintering of 17-4PH stainless steel feedstock for metal injection molding, Mater. Lett., 62(2008), No. 19, p. 3334.
|
[3] |
L. Liu, N.H. Loh, B.Y. Tay, and S.B.Tor, Microstructure evolution of 316L stainless steel micro components prepared by micro powder injection molding, Powder Technol., 206(2011), No. 3, p. 246.
|
[4] |
M.J Sulaiman, N. Johari, M.A. Ahmad, R.B. Ibrahim, A.R.A. Talib, and M.Y. Harmin, Solvent debinding of inconel 718 fabricated via metal injection molding, Adv. Mater. Res., 1133(2016), p. 275.
|
[5] |
P. Imgrund, A. Rota, and A. Simchi, Micro injection molding of 316L/17-4PH and 316L/Fe powders for fabrication of magnetic-nonmagnetic bimetals, J. Mater. Process. Technol., 200(2008), No. 1-3, p. 259.
|
[6] |
Y. Shengjie, Y.C. Lam, and J.C. Chai, Evolution of liquid-bond strength in powder injection molding compact during thermal debinding:numerical simulation, Modell. Simul. Mater. Sci. Eng., 12(2004), No. 4, p. 311.
|
[7] |
L. Gorjan, A. Dakskobler, and T. Kosmač, Partial wick-debinding of low-pressure powder injection-molded ceramic parts, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3013.
|
[8] |
I.M. Somasundram, A. Cendrowicz, and M.L. Johns, 2-D simulation of wick debinding for ceramic parts in close proximity, Chem. Eng. Sci., 65(2010), No. 22, p. 5990.
|
[9] |
F.A. Çetinel, W. Bauer, R. Knitter, and J. Haußelt, Factors affecting strength and shape retention of zirconia micro bending bars during thermal debinding, Ceram. Int., 37(2011), No. 7, p. 2809.
|
[10] |
K. Sharmin and I. Schoegl, Two-step debinding and co-extrusion of ceramic-filled PEBA and EVA blends, Ceram. Int., 40(2014), No. 9, p. 14871.
|
[11] |
S.B. Guo, A.M. Chu, H.J. Wu, C.B. Cai, and X.H. Qu, Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti-24Nb-4Zr-7.9Sn alloy for biomedical applications, J. Alloys Compd., 597(2014), No. 6, p. 211.
|
[12] |
C. Ren, Z.Z. Fang, H. Zhang, and M. Koopman, The study on low temperature sintering of nano-tungsten powders, Int. J. Refract. Met. Hard Mater., 61(2016), No. 6, p. 273.
|
[13] |
A. Simchi, A. Rota, and P. Imgrund, An investigation on the sintering behavior of 316L and 17-4PH stainless steel powders for graded composites, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 282.
|
[14] |
Y.X. Wu, R.M. German, D. Blaine, B. Marx, and C. Schlaefer, Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17-4 PH stainless steel, J. Mater. Sci., 37(2002), No. 17, p. 3573.
|
[15] |
H.J. Sung, T.K. Ha, S. Ahn, and Y.W. Chang, Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties, J. Mater. Process. Technol., 130-131(2002), No. 2, p. 321.
|