Chun-fa Liao, Yun-fen Jiao, Xu Wang, Bo-qing Cai, Qiang-chao Sun, and Hao Tang, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 1034-1042. https://doi.org/10.1007/s12613-017-1493-3
Cite this article as:
Chun-fa Liao, Yun-fen Jiao, Xu Wang, Bo-qing Cai, Qiang-chao Sun, and Hao Tang, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 1034-1042. https://doi.org/10.1007/s12613-017-1493-3
Research Article

Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production

+ Author Affiliations
  • Corresponding author:

    Yun-fen Jiao    E-mail: yyjyf@163.com

  • Received: 30 December 2016Revised: 22 March 2017Accepted: 23 March 2017
  • Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.
  • loading
  • [1]
    Y. Gu, Rare earth element samarium and its application, Rare Earth Inf., 2005, No. 5, p. 28.
    [2]
    J.H. Yi, Development of samarium-cobalt rare earth permanent magnetic materials, Rare Met., 33(2014), No. 6, p. 633.
    [3]
    K.J. Li, Q.A. Li, X.T. Jing, J. Chen, X.Y. Zhang, and Q. Zhang, Effects of Sm on microstructures and mechanical properties of Mg-6Al-1.2Y-0.9Nd alloys, Rare Met. Mater. Eng., 39(2010), No. 1, p. 96.
    [4]
    Z.W. Chen, P. Chen, and C.Y. Ma, Microstructures and mechanical properties of Al-Cu-Mn alloy with La and Sm addition, Rare Met., 31(2012), No. 4, p. 332.
    [5]
    M.A. Ahmed, N.G. Imam, M.K. Abdelmaksoud, and Y.A. Saeid, Magnetic transitions and butterfly-shaped hysteresis of Sm-Fe-Al-based perovskite-type orthoferrite, J. Rare Earths, 33(2015), No. 9, p. 965.
    [6]
    H.X. Qiu, Applications of Sm and CNTs in Al-Si Alloys and their Performances[Dissertation], Nanchang University, Nanchang, Jiangxi, 2015, p. 5.
    [7]
    Z. Hu, H. Yan, and Y.S. Rao, Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3228.
    [8]
    K.J. Li, Q.A. Li, X.T. Jing, J. Chen, and X.Y. Zhang, Effects of Sb, Sm and Sn additions on the microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd alloy, Rare Met., 28(2009), No. 5, p. 516.
    [9]
    Q.A. Li, X.F. Li, Q. Zhang, and J. Hen, Effect of rare-earth element Sm on the corrosion behavior of Mg-6Al-1.2Y-0.9Nd alloy, Rare Met., 29(2010), No. 6, p. 557.
    [10]
    M.L. Zhang, H.Y. Lu, Z.Y. Cao, and D.X. Tang, Study on reduction of rare earth compounds by aluminum thermal method, J. Chin. Rare Earth Soc., 8(1990), No. 2, p. 183.
    [11]
    Q. Chen, W. Han, Y.S. Yang, and Y.L. Xu, A new electrochemical preparation method for formation Sm-Al alloys on inert Mo electrode from Sm2O3 in LiCl-KCl-MgCl2-KF molten salts, Acta Metall. Sinica, 25(2012), No. 2, p. 102.
    [12]
    Y. Xue, Q. Wang, Y.D. Yan, L. Chen, M.L. Zhang, and Z.J. Zhang, Direct electrochemical reduction of Sm2O3 and formation of Al-Sm alloys in LiCI-KCl-AlCl3 melts, Chin. J. Inorg. Chem., 29(2013), No. 9, p. 1947.
    [13]
    Y. Castrillejo, P. Fernández, J. Medina, P. Hernández, and E. Barrado, Electrochemical extraction of samarium from molten chlorides in pyrochemical processes, Electrochim. Acta, 56(2011), No. 24, p. 8638.
    [14]
    Y. Castrillejo, C. de la Fuente, M. Vega, F. de la Rosa, R. Pardo, and E. Barrado, Cathodic behaviour and oxoacidity reactions of samarium (Ⅲ) in two molten chlorides with different acidity properties:the eutectic LiCI-KCl and the equimolar CaCl2-NaCl melt, Electrochim. Acta, 97(2013), p. 120.
    [15]
    M. Gibilaro, L. Massot, P. Chamelot, and P. Taxil, Co-reduction of aluminium and lanthanide ions in molten fluorides:Application to cerium and samarium extraction from nuclear wastes, Electrochim. Acta, 54(2009), No. 22, p. 5300.
    [16]
    M.R. Bermejo, E. Bariado, A.M. Martinez, and Y. Castrillejo, Electrodeposition of Lu on W and Al electrodes:Electrochemical formation of Lu-Al alloys and oxoacidity reactions of Lu (Ⅲ) in the eutectic LiCl-KCl, J. Electroanal. Chem., 617(2008), No. 1, p. 85.
    [17]
    J.Z. Chen, J.N. Liu, B. Li, J. Wang, X.F. Song, and J.G. Yu, Estimation and measurement on conductance of MgCl2-NaCl-KCl-CaCl2 system, Light Met., 2006, No. 8, p. 56.
    [18]
    Q.S. Wu, Electrical conductivity and neodymium solubility of Nd2O3-NdF3-LiF fusion salt system, Rare Met. Cem. Carbides, 34(2006), No. 1, p. 52.
    [19]
    M. Bao, Z.W. Wang, B.L. Gao, Z.N. Shi, X.W. Hu, and J.Y. Yu, Electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 molten salts, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3788.
    [20]
    R. Guo, Study of Al-Sc Alloy Prepared by Molten Salt Electrolysis Method[Dissertation], Northeastern University, Shenyang, 2008, p. 27.
    [21]
    J. Zhang, X. Zheng, J. Liang, H.X. Liu, G.H. Peng, and X.L. Zhang, Study on influencing factors of electrical conductivity of NdF3-LiF-Nd2O3 molten salt, Rare Met. Cem. Carbides, 42(2014), No. 4, p. 17.
    [22]
    X.W. Hu, Z.W. Wang, B.L. Gao, and Z.N. Shi, Study on the electrical conductivity of NdF3-LiF-Nd2O3 system melts determined by CVCC technique, J. Northeast. Univ. Nat. Sci., 29(2008), No. 9, p. 1294.
    [23]
    B.L. Gao, F.G. Liu, Z.W. Wang, and Z.N. Shi, Study on electrical conductivity of the molten salts of KNO3-NaNO2-NaNO3 ternary system, J. Northeast. Univ. Nat. Sci., 31(2010), No. 5, p. 696.
    [24]
    C.F. Liao, H. Tang, X. Wang, L.S. Luo, and M.Z. Fang, Study on electrical conductivity of Na3AlF6-AlF3-LiF-MgF2-Al2O3-Nd2O3-CuO molten salt system, Rare Met. Cem. Carbides, 44(2016), No. 1, p. 60.
    [25]
    M.J. Zhang and Z.W. Wang, Electrochemical Principle and Application of Molten Salt, Chemical Industry Press, Beijing, 2006, p. 128.
    [26]
    Y.G. Li, Y.C. Zhai, N. Wang, and J.L. Liang, Conductivity of Na2WO4-ZnO-WO3 molten salt system, Chin. J. Nonferrous Met., 15(2005), No. 7, p. 1139.
    [27]
    X.F. He, Y.G. Li, and Z.H. Li, Research on conductivity of KCl-NaCl-NaF-SiO2 molten salt system, Hydrometallurgy China, 29(2010), No. 1, p. 12.
    [28]
    X.W. Hu, J.Y. Qiu, B.L. Gao, Z.N. Shi, F.G. Liu, and Z.W. Wang, Raman spectroscopy and ionic structure of Na3AlF6-Al2O3 melts, Trans. Nonferrous Met. Soc. China, 212(2011), No. 2, p. 402.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(430) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return