Cite this article as: |
M. L. Saucedo-Muñoz, A. Ortiz-Mariscal, V. M. Lopez-Hirata, J. D. Villegas-Cardenas, Orlando Soriano-Vargas, and Erika O. Avila-Davila, Precipitation analysis of as-cast HK40 steel after isothermal aging, Int. J. Miner. Metall. Mater., 24(2017), No. 10, pp. 1125-1133. https://doi.org/10.1007/s12613-017-1503-5 |
V. M. Lopez-Hirata E-mail: vlopezhi@prodigy.net.mx
[1] |
A.A. Kaya, P. Krauklis, and D.J. Young, Microstructure of HK40 alloy after high temperature service in oxidizing/carburizing environment:I. Oxidation phenomena and propagation of a crack, Mater. Charact., 49(2002), No. 1, p. 11.
|
[2] |
J.W. Liu, D.L. Jiao, and C.P. Luo, Microstructural evolution in austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during long-term service, Mater. Sci. Eng. A, 527(2010), No. 10-11, p. 2772.
|
[3] |
S. Haro R., D. Lopez L., A. Velasco T. and R. Viramontes B., Microstructural factors that determine the weldability of a high Cr-high Si HK40 alloy, Mater. Chem. Phys., 66(2000), No. 1, p. 90.
|
[4] |
A.M. Babakr, A.A. Al-Ahmrai, K. Al-Jumayiah, and F. Habiby, Failure investigation of a furnace tube support, J. Fail. Anal. Prev., 9(2009), No. 1, p. 16.
|
[5] |
A.A. Kaya, Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment:Ⅱ. Carburization and carbide transformations, Mater. Charact., 49(2002), No. 1, p. 23.
|
[6] |
ASTM Standard, ASTM A351/A351M-03, Standard Specification for Casting, Austenitic, Austenitic-Ferritic (duplex), for Pressure-Containing Parts, ASTM, 2004.
|
[7] |
O. Coreño-Alonso, A. Duffus-Scott, C. Zánchez-Cornejo, J. Coreño-Alonso, F. Sánchez-de Jesús, and A. Bolarín-Miró, On the effect of σ-phase formation during metal dusting, Mater. Chem. Phys., 84(2004), No. 1, p. 20.
|
[8] |
L.H. de Almeaida, A.F. Ribeiro, and L.L. May, Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes, Mater. Charact., 49(2003), No. 3, p. 219.
|
[9] |
M. Whittaker, B. Wilshire, and J. Brear, Creep fracture of the centrifugally-cast superaustenitic steels, HK40 and HP40, Mater. Sci. Eng. A, 580(2013), No. 9, p. 391.
|
[10] |
J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc&DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273.
|
[11] |
Thermo-Calc Prisma software[tcfe7.tdb and mobFe2.ddb data] version 2016b, Sweden, 2016.
|
[12] |
G. Kostorz, Phase Transformations in Materials, Wiley-VCH, Germany, 2001, p. 311.
|
[13] |
W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564.
|
[14] |
ASTM Standard, ASTM E18-02, Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM, 2004.
|
[15] |
Thermo-Calc software[tcfe7.tdb data] version 2016b, Sweden. 2016.
|
[16] |
T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol., 17(2001), No. 1, p. 1.
|
[17] |
G.R. Kegg and J.M. Silcock, The shape of M23C6 particles, Scripta Metall., 6(1972), No. 11, p. 1083.
|
[18] |
K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, and B. Nestler, Computational Material Engineering, Elsevier, UK, 2007, p. 179.
|