Yuan-ji Shi, Xiao-chun Wu, Jun-wan Li, and Na Min, Tempering stability of Fe-Cr-Mo-W-V hot forging die steels, Int. J. Miner. Metall. Mater., 24(2017), No. 10, pp. 1145-1157. https://doi.org/10.1007/s12613-017-1505-3
Cite this article as:
Yuan-ji Shi, Xiao-chun Wu, Jun-wan Li, and Na Min, Tempering stability of Fe-Cr-Mo-W-V hot forging die steels, Int. J. Miner. Metall. Mater., 24(2017), No. 10, pp. 1145-1157. https://doi.org/10.1007/s12613-017-1505-3
Research Article

Tempering stability of Fe-Cr-Mo-W-V hot forging die steels

+ Author Affiliations
  • Corresponding author:

    Yuan-ji Shi    E-mail: syuanj@163.com

  • Received: 21 January 2017Revised: 25 April 2017Accepted: 27 April 2017
  • The tempering stability of three Fe-Cr-Mo-W-V hot forging die steels (DM, H21, and H13) was investigated through hardness measurements and transmission electron microscopy (TEM) observations. Both dilatometer tests and TEM observations revealed that DM steel has a higher tempering stability than H21 and H13 steels because of its substantial amount of M2C (M represents metallic element) carbide precipitations. The activation energies of the M2C carbide precipitation processes in DM, H21, and H13 steels are 236.4, 212.0, and 228.9 kJ/mol, respectively. Furthermore, the results indicated that vanadium atoms both increase the activation energy and affect the evolution of M2C carbides, resulting in gradual dissolution rather than over-aging during tempering.
  • loading
  • [1]
    D.H. Kim, H.C. Lee, B.M. Kim, and K.H. Kim, Estimation of die service life against plastic deformation and wear during hot forging processes, J. Mater. Process. Technol., 166(2005), No. 3, p. 372.
    [2]
    K. Frisk, Simulation of precipitation of secondary carbides in hot work tool steels, Mater. Sci. Technol., 28(2012), No. 3, p. 288.
    [3]
    S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura, Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction, Metall. Trans. A, 14(1983), No. 6, p. 1025.
    [4]
    K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vander Sande, Spinodal decomposition during aging of Fe-Ni-C martensites, Metall. Trans. A, 20(1989), No. 12, p. 2717.
    [5]
    V.H. Baltazar Hernandez, S.S. Nayak, and Y. Zhou, Tempering of martensite in dual-phase steels and its effects on softening behavior, Metall. Mater. Trans. A, 42(2011), No. 10, p. 3115.
    [6]
    L.Q. Xu, D.T. Zhang, Y.C. Liu, B.Q. Ning, Z.X. Qiao, Z.S. Yan, and H.J. Li, Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 438.
    [7]
    G. Ghosh and G.B. Olson, Precipitation of paraequilibrium cementite:Experiments, and thermodynamic and kinetic modeling, Acta Mater., 50(2002), No. 8, p. 2099.
    [8]
    S. Björklund, L.F. Donaghey, and M. Hillert, The effect of alloying elements on the rate of Ostwald ripening of cementite in steel, Acta Metall., 20(1972), No. 7, p. 867.
    [9]
    B. Kim, C. Celada, D. San Martín, T. Sourmail, and P.E.J. Rivera-Díaz-del-Castillo, The effect of silicon on the nanoprecipitation of cementite, Acta Mater., 61(2013), No. 18, p. 6983.
    [10]
    G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T Maki, Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe-0.6 mass% C martensite, Acta Mater., 55(2007), No. 15, p. 5027.
    [11]
    R.C. Thomson and M.K. Miller, The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels, Appl. Surf. Sci., 87-88(1995), No. 3, p. 185.
    [12]
    J. Pilling and N. Ridley, Tempering of 2.25 pct Cr-1 pct Mo low carbon steels, Metall. Trans. A, 13(1982), No. 4, p. 557.
    [13]
    R.G. Baker and J. Nutting, The tempering of 2.25Cr-1Mo steel after quenching and normalizing, J. Iron Steel Inst., 192(1959), p. 257
    [14]
    A. Inoue and T. Masumoto, Carbide reactions (M3C → M7C3→ M23C6→ M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels, Metall. Trans. A, 11(1980), No. 5, p. 739.
    [15]
    P. Chakraborty, V. Kain, P.K. Pradhan, R.K. Fotedar, and N. Krishnamurthy, Corrosion of modified 9Cr-1Mo steel and Indian RAFMS in static Pb-17Li at 773 K, J. Fusion Energy, 34(2015), No. 2, p. 293.
    [16]
    R. Viswanathan and W.T. Bakker, Materials for ultrasupercritical coal power plants-Boiler materials:Part 1, J. Mater. Eng. Perform., 10(2001), No. 1, p. 81.
    [17]
    S.I. Porollo, A.M. Dvoriashin, Y.V. Konobeev, and F.A. Gamer, Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60, J. Nucl. Mater., 329-333(2004), p. 314.
    [18]
    R.L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors, Int. Mater. Rev., 50(2005), No. 5, p. 287.
    [19]
    S. Moniri, M. Ghoranneviss, M.R. Hantehzadeh, and A. Salar Elah, Nano-scale precipitates of reduced activation steels for the application of nuclear fusion reactors, J. Fusion Energy, 34(2015), No. 3, p. 449.
    [20]
    M. Nurbanasari, P. Tsakiropoulos, and E.J. Palmiere, Microstructural evolution of a heat-treated H23 tool steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 272.
    [21]
    T. Mukherjee, Materials for Metal Cutting, ISI Publication, London, 1970, p. 80.
    [22]
    Y.T. Zhang, L.D. Miao, X.J. Wang, H.Q. Zhang, and J.F. Li, Evolution behavior of carbides in 2.25Cr-1Mo-0.25V steel, Mater. Trans., 50(2009), No. 11, p. 2507.
    [23]
    Y. Zhang, Application of Phase Equilibrium Thermodynamic Method in Alloy Design for High Carbon Alloy Steel with Ultra-Fine Carbides[Dissertation], Dalian Maritime University, Dalian, 2007.
    [24]
    R. Ishii, Y. Tsuda, M. Yamada, and K. Kimura, Fine precipitates in high chromium heat resisting steels, Tetsu-to-Hagane, 88(2002), No. 1, p. 36.
    [25]
    T. Onizawa, T. Wakai, M. Ando, and K. Aoto, Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel, Nucl. Eng. Des., 238(2008), No. 2, p. 408.
    [26]
    R.A. Mesquita and H.J. Kestenbach, Influence of silicon on secondary hardening of 5wt% Cr steels, Mater. Sci. Eng. A, 556(2012), p. 970.
    [27]
    A. Medvedeva, J. Bergström, S. Gunnarsson, and J. Andersson, High-temperature properties and microstructural stability of hot-work tool steels, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 39.
    [28]
    P. Bała and J. Pacyna, The kinetics of phase transformations during tempering in high-speed steels, J. Ach. Mater. Manuf. Eng., 23(2007), No. 2, p. 15.
    [29]
    W.A. Johnson and R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME, 135(1939), No. 8, p. 416.
    [30]
    M. Avrami, Kinetics of phase change. I General theory, J. Chem. Phys., 7(1939), No. 12, p. 1103.
    [31]
    M. Avrami, Kinetics of phase change. Ⅱ Transformation-time relations for random distribution of nuclei, J. Chem. Phys., 8(1940), No. 2, p. 212.
    [32]
    M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. Ⅲ, J. Chem. Phys., 9(1941), No. 2, p. 177.
    [33]
    E. López-Martínez, O. Vázquez-Gómez, H.J. Vergara-Hernández, and B. Campillo, Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels, Int. J. Miner., Metall. Mater., 22(2015), No. 12, p. 1304.
    [34]
    I.M. Lifshitz and V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19(1961), No. 1-2, p. 35.
    [35]
    C. Wagner, Theorie der alterung von niederschlägen durch umlösen, Z. Elektrochem., 65(1961), No. 7-8, p. 581.
    [36]
    B.A. Lindsley and A.R. Marder, Solid particle erosion of an Fe-Fe3C metal matrix composite, Metall. Mater. Trans. A, 29(1998), No. 3, p. 1071.
    [37]
    W.J. Nam and C.M. Bae, Coarsening behavior of cementite particles at a subcritical temperature in a medium carbon steel, Scripta Mater., 41(1999), No. 3, p. 313.
    [38]
    L.R. Liu, T. Jin, N.R. Zhao, X.F. Sun, H.R. Guan, and Z.Q Hu, Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy, Mater. Sci. Eng. A, 361(2003), No. 1-2, p. 191.
    [39]
    L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu, Effect of carbides on the creep properties of a Ni-base superalloy M963, Mater. Sci. Eng. A, 397(2005), No. 1, p. 297.
    [40]
    H.B. Wu, S.W. Yan, S.Q. Yuan, C.J. Shang, X.M. Wang, and X.L. He, Effect of isothermal relaxation on thermo-stability of non-equilibrium microstructure in micro-alloyed steel, Acta Metall. Sinica, 41(2005), No. 4, p. 385.
    [41]
    M.T.C. Ferrari, J. Andersson, and M. Kvarnström, Influence of lowered austenitisation temperature during hardening on tempering resistance of modified H13 tool steel (Uddeholm Dievar), Int. Heat Treat. Surf. Eng., 7(2013), No. 3, p. 129.
    [42]
    N. Gope, A. Chatterjee, T. Mukherjee, and D.S. Sarma, Influence of long-term aging and superimposed creep stress on the microstructure of 2.25Cr-1Mo steel, Metall. Trans. A, 24(1993), No. 2, p. 315.
    [43]
    R.C. Yang, K. Chen, H.X. Feng, and H. Wang, Determination and application of larson-miller parameter for heat resistant steel 12CrlMoV and 15CrMo, Acta Metall. Sinica (Engl. Lett.), 17(2004), No. 4, p. 471.
    [44]
    R.C. Yang, K. Chen, H.X. Feng, and H. Wang, Variation of substructures of pearlitic heat resistant steel after high temperature aging, Acta Metall. Sinica (Engl. Lett.), 17(2004), No. 4, p. 477.
    [45]
    Q.C. Zhou, X.C. Wu, N.N. Shi, J.W. Li, and N. Min, Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5696.
    [46]
    H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels Microstructure and Properties, 3rd Ed., Elsevier, Oxford, 2006, p. 195.
    [47]
    S. Karagöz, H.F. Fischmeister, H.O. Andrén, and G.J. Cai, Microstructural changes during overtempering of high-speed steels, Metall. Trans. A, 23(1992), No. 6, p. 1631.
    [48]
    J. Guo, H.W. Qu, L.G. Liu, Y.L. Sun, Y. Zhang, and Q.X. Yang, Study on stable and meta-stable carbides in a high speed steel for rollers during tempering processes, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 146.
    [49]
    K.J. Kurzydłowski and W. Zieliński, Mo2C → M6C carbide transformation in low alloy Cr-Mo ferritic steels, Met. Sci., 18(1984), No. 4, p. 223.
    [50]
    X.B. Hu, L. Li, X.C. Wu, and M. Zhang, Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium, Int. J. Fatigue, 28(2006), No. 3, p. 175.
    [51]
    N. Dudova and R. Kaibyshev, On the precipitation sequence in a 10% Cr steel under tempering, ISIJ Int., 51(2011), No. 5, p. 826.
    [52]
    M. Jung, S.J. Lee, and Y.K. Lee, Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel, Metall. Mater. Trans. A, 40(2009), No. 3, p. 551.
    [53]
    P. Bała, The kinetics of phase transformations during tempering of tool steels with different carbon content, Arch. Metall. Mater., 54(2009), No. 2, p. 491.
    [54]
    P. Tao, C. Zhang, Z.G. Yang, and H. Takeda, Evolution of second phase in 2.25Cr-1Mo-0.25V steel weld metal during high temperature tempering, Acta Metall. Sinica, 45(2009), No. 1, p. 51.
    [55]
    J.G. Jung, M. Jung, S. Kang, and Y.K. Lee, Precipitation behaviors of carbides and Cu during continuous heating for tempering in Cu-bearing medium C martensitic steel, J. Mater. Sci., 49(2014), No. 5, p. 2204.
    [56]
    H.M. Lee and S.M. Allen, Coarsening resistance of M2C carbides in secondary hardening steels:Part Ⅲ. Comparison of theory and experiment, Metall. Trans. A, 22(1991), No. 12, p. 2877.
    [57]
    D.M. Davies and B. Ralph, Field ion microscopic study of quenched and tempered Fe-Mo-C, J. Iron Steel Inst., 210(1972), No. 4, p. 262.
    [58]
    H.M. Lee, S.M. Allen, and M. Grujicic, Coarsening resistance of M2C carbides in secondary hardening steels:Part I. Theoretical model for multicomponent coarsening kinetics, Metall. Trans. A, 22(1991), No. 12, p. 2863.
    [59]
    Z.Y. Zhao, Studing status on the secondary hardening phenomenon in ultra-high strength steels, J. Aeronaut. Mater., 22(2002), No. 4, p. 46.
    [60]
    T. Wen, X.F. Hu, Y.Y. Song, D.S. Yan, and L.J. Rong, Carbides and mechanical properties in an Fe-Cr-Ni-Mo high-strength steel with different V contents, Mater. Sci. Eng. A, 588(2013), p. 201.
    [61]
    S. Suresh, Fatigue of Materials, Cambridge Solid State Science Series[Dissertation], Cambridge University, Cambridge, 1991.
    [62]
    A.F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez-Armas, Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels, J. Nucl. Mater., 307-311(2002), p. 509.
    [63]
    J. Sjötröm, Chromium Martensitic Hot-work Tool Steels Damage, Performance and Microstructure[Dissertation], Karlstad University, Karlstad, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(679) PDF Downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return