Se-fei Yang, Ying Wen, Pan Yi, Kui Xiao, and Chao-fang Dong, Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner. Metall. Mater., 24(2017), No. 11, pp.1260-1266. https://dx.doi.org/10.1007/s12613-017-1518-y
Cite this article as: Se-fei Yang, Ying Wen, Pan Yi, Kui Xiao, and Chao-fang Dong, Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner. Metall. Mater., 24(2017), No. 11, pp.1260-1266. https://dx.doi.org/10.1007/s12613-017-1518-y
Research Article Open Access

Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel

Author Affilications
Funds: 

This work was financially supported by the National Natural Science Foundation of China (No. 81371183).

  • The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30℃ displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.
  • J. Verma and R.V. Taiwade, Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments-A review, J. Manuf. Processes, 25(2017), p. 134.
    A. Momeni, S. Kazemi, and A. Bahrani, Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 953.
    X.Q. Cheng, C.T. Li, C.F. Dong, and X.G. Li, Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 42.
    A.V. Jebaraj, L. Ajaykumar, C.R. Deepak, and K.V.V. Aditya, Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications-A recent review, J. Adv. Res., 8(2017), No. 3, p. 183.
    J. Charles, Duplex stainless steels-a review after DSS'07 in Grado, Steel Res. Int., 79(2008), No. 6, p. 455.
    M. Lundin, Y. Hedberg, T. Jiang, G. Herting, X. Wang, E. Thormann, E. Blomberg, and I.O. Wallinder, Adsorption and protein-induced metal release from chromium metal and stainless steel, Adv. Colloid Interface Sci., 366(2012), No. 1, p. 155.
    M. Conradi, P.M. Schön, A. Kocijan, M. Jenko, and G.J. Vancso, Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions, Mater. Chem. Phys., 130(2011), No. 1-2, p. 708.
    J.S. Liu, Q. Wang, C. Lv, J.N. Sun, Z.Q. Chen, and N. Gao, Elemental release from Ni-Cr dental alloy in artificial saliva and saline solution, Mater. Sci. Forum, 610-613(2009), p. 1164.
    M.N. El-Haddad, Chitosan as a green inhibitor for copper corrosion in acidic medium, Int. J. Biol. Macromol., 55(2013), No. 2, p. 142.
    Y. Sangeetha, S. Meenakshi, and C.S. Sairam, Interactions at the mild steel acid solution interface in the presence of O-fumaryl-chitosan:Electrochemical and surface studies, Carbohydr. Polym., 136(2016), p. 38.
    Y.N. Wang, C.F. Dong, D.W. Zhang, P.P. Ren, L. Li, and X.G. Li, Preparation and characterization of a chitosan-based low-pH-sensitive intelligent corrosion inhibitor, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 998.
    E.M. Fayyad, K.K. Sadasivuni, D. Ponnamma, and M.A. Almaadeed, Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel, Carbohydr. Polym., 151(2016), p. 871.
    G.A. El-Mahdy, A.M. Atta, H.A. Al-Lohedan, and A.O. Ezzat, Influence of green corrosion inhibitor based on chitosan ionic liquid on the steel corrodibility in chloride solution, Int. J. Electrochem. Sci., 10(2015), No. 7, p. 5812.
    Y. Sangeetha, S. Meenakshi, and C. Sairamsundaram, Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium) propyl chitosan chloride as inhibitor on mild steel, Int. J. Biol. Macromol., 72(2014), p. 1244.
    M. Hoseinpoor, M. Momeni, M.H. Moayed, and A. Davoodi, EIS assessment of critical pitting temperature of 2205 duplex stainless steel in acidified ferric chloride solution, Corros. Sci., 80(2014), No. 3, p. 197.
    M. Gholami, M. Hoseinpoor, and M.H. Moayed, A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel, Corros. Sci., 94(2015), p. 156.
    S.A. Umoren, M.M. Solomon, I.I. Udosoro, and A.P. Udoh, Synergistic and antagonistic effects between halide ions and carboxymethyl cellulose for the corrosion inhibition of mild steel in sulphuric acid solution, Cellulose, 17(2010), No. 3, p. 635.
    S. Cheng, S.G. Chen, T. Liu, X.T. Chang, and Y.S. Yin, Carboxymenthylchitosan as an ecofriendly inhibitor for mild steel in 1M HCl, Mater. Lett., 61(2007), No. 14-15, p. 3276.
    S.A. Umoren, M.J. Banera, T. Alonso-Garcia, C.A. Gervasi, and M.V. Mirífico, Inhibition of mild steel corrosion in HCl solution using chitosan, Cellulose, 20(2013), No. 5, p. 2529.
    Y. Liu, C.J. Zou, X.L. Yan, R.J. Xiao, T.Y. Wang, and M. Li, β-cyclodextrin modified natural chitosan as a green inhibitor for carbon steel in acid solutions, Ind. Eng. Chem. Res., 54(2015), No. 21, p. 5664.
  • Related Articles

    [1]Hong-liang Xiang, Yu-rui Hu, Hua-tang Cao, Dong Liu, Xuan-pu Dong. Erosion-corrosion behavior of SAF3207 hyper-duplex stainless steel [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1415-1426. DOI: 10.1007/s12613-019-1825-6
    [2]Wei Liu, Qing-he Zhao, Shuan-zhu Li. Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet-dry acid corrosion environment [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(1): 55-63. DOI: 10.1007/s12613-017-1378-5
    [3]Meng-yu Chai, Quan Duan, Wen-jie Bai, Zao-xiao Zhang, Xu-meng Xie. Acoustic emission detection of 316L stainless steel welded joints during intergranular corrosion [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(9): 942-949. DOI: 10.1007/s12613-015-1153-4
    [4]Shu-jun Gao, Chao-fang Dong, An-qing Fu, Kui Xiao, Xiao-gang Li. Corrosion behavior of the expandable tubular in formation water [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(2): 149-156. DOI: 10.1007/s12613-015-1055-5
    [5]Fu-shao Li, Mao-zhong An, Dong-xia Duan. Corrosion inhibition of stainless steel by a sulfate-reducing bacteria biofilm in seawater [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(8): 717-725. DOI: 10.1007/s12613-012-0618-y
    [6]Jin-jie Shi, Wei Sun. Electrochemical and analytical characterization of three corrosion inhibitors of steel in simulated concrete pore solutions [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(1): 38-47. DOI: 10.1007/s12613-012-0512-7
    [7]Jin-yan Zhong, Min Sun, Da-bo Liu, Xiao-gang Li, Tian-qi Liu. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 282-289. DOI: 10.1007/s12613-010-0306-8
    [8]Xue-qun Cheng, Xiao-gang Li, Chao-fang Dong. Study on the passive film formed on 2205 stainless steel in acetic acid by AAS and XPS [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(2): 170-176. DOI: 10.1016/S1674-4799(09)60029-7
    [9]Tao Li, Ming Yue, Aizhi Sun, Baoqin Qiu, Yaofu Xiao, Jiuxing Zhang. Corrosion behaviors of NdFeB magnets prepared by spark plasma sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(2): 147-150.
    [10]Baofeng Ding, Yinshun Wu, Bei Cao, Salih Hmida Abubakir, Jianhui Xie. Martensite transformation induced by deformation and its phase electrochemical behavior for stainless steels AISI 304 and 316L [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(6): 437-440.
  • Cited by

    Periodical cited type(31)

    1. D. Karthik, Kalim Deshmukh, K. Praveenkumar, et al. Laser peening induced mitigation of severe pitting corrosion in titanium stabilized 321 steel. Optics & Laser Technology, 2024, 172: 110537. DOI:10.1016/j.optlastec.2023.110537
    2. Himanshi Bairagi, Priya Vashishth, Rashmi Sehrawat, et al. Advanced applications of chitosan and derivative based bioinspired, sustainable corrosion inhibitor for metal surface protection. Canadian Metallurgical Quarterly, 2024. DOI:10.1080/00084433.2024.2427438
    3. A. V. Khramenkova, D. N. Izvarina, V. I. Mishurov, et al. Electrochemical Synthesis of Hybrid Materials Based on Polyelectrolyte Complexes of Chitosan and Their Physicochemical Properties. Russian Journal of Electrochemistry, 2023, 59(11): 887. DOI:10.1134/S1023193523110083
    4. Yong Wang, Sohei Sukenaga, Hiroyuki Shibata, et al. Combination of In Situ Confocal Microscopy and Calorimetry to Investigate Solidification of Super‐ and Hyper‐Duplex Stainless Steels. steel research international, 2023, 94(11) DOI:10.1002/srin.202200960
    5. Younes Ech Charqy, Rachid Radouani, Mohamed Essahli. FE modeling of the effect of conductivity in galvanic corrosion between different types of stainless steel and carbon steel in a structure bolted joint. International Journal of Building Pathology and Adaptation, 2023, 41(3): 574. DOI:10.1108/IJBPA-10-2021-0138
    6. Xuanyi Wang, Shuang Liu, Jing Yan, et al. Recent Progress of Polymeric Corrosion Inhibitor: Structure and Application. Materials, 2023, 16(8): 2954. DOI:10.3390/ma16082954
    7. Richika Ganjoo, Shveta Sharma, Chandrabhan Verma, et al. Heteropolysaccharides in sustainable corrosion inhibition: 4E (Energy, Economy, Ecology, and Effectivity) dimensions. International Journal of Biological Macromolecules, 2023, 235: 123571. DOI:10.1016/j.ijbiomac.2023.123571
    8. A. V. Khramenkova, D. N. Izvarina, V. I. Mishurov, et al. ELECTROCHEMICAL SYNTHESIS OF HYBRID MATERIALS BASED ON POLYELECTROLYTE CHITOSAN COMPLEXES AND INVESTIGATION OF THEIR PHYSICAL AND CHEMICAL PROPERTIES. Электрохимия, 2023, 59(11): 707. DOI:10.31857/S0424857023110087
    9. Shuangyu Cai, Keke Lu, Xinnan Li, et al. Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution. International Journal of Minerals, Metallurgy and Materials, 2022, 29(11): 2053. DOI:10.1007/s12613-021-2291-5
    10. I Gusti Ayu Arwati, Edy Herianto Majlan, Sagir Alva, et al. Effect of Chitosan on the Corrosion Inhibition for Aluminium Alloy in H2SO4 Medium. Energies, 2022, 15(22): 8511. DOI:10.3390/en15228511
    11. Dan Meng, Qichang Fan, Xue Meng, et al. Adsorption and inhibition mechanisms of chitosan derivatives on carbon steel surface: a combined DFT and MD study. Journal of Nanoparticle Research, 2022, 24(10) DOI:10.1007/s11051-022-05581-6
    12. Gökhan ÖZER. Investigation of Inhibitory Effects of Chitosan on Pitting and Electrochemical Corrosion Behavior Caused by Sigma Phase in Duplex Stainless Steels (DSS). Protection of Metals and Physical Chemistry of Surfaces, 2022, 58(1): 176. DOI:10.1134/S2070205122010154
    13. Natarajan Rajamohan, Fatema Said Zahir Said Al Shibli. Synthesis and application of carbon substrate nano material from biomass for surface protection – Effect of variables, electrochemical and isotherm studies. Chemosphere, 2022, 292: 133479. DOI:10.1016/j.chemosphere.2021.133479
    14. Jiali Yuan, Zhen Chen, Qiang Yu, et al. Enhanced electrochemical removal of dye wastewater by PbO2 anodes using halloysite nanotubes with different surface charge properties. Journal of Electroanalytical Chemistry, 2022, 923: 116816. DOI:10.1016/j.jelechem.2022.116816
    15. Chandrabhan Verma, Mumtaz A. Quraishi, K.Y. Rhee. Natural ligands: Promising ecofriendly alternatives for corrosion protection and plethora of many prospects. Process Safety and Environmental Protection, 2022, 162: 253. DOI:10.1016/j.psep.2022.04.014
    16. Junying Hu, Qi Xiong, Longjun Chen, et al. Corrosion inhibitor in CO2-O2-containing environment: Inhibition effect and mechanisms of Bis(2-ehylhexyl) phosphate for the corrosion of carbon steel. Corrosion Science, 2021, 179: 109173. DOI:10.1016/j.corsci.2020.109173
    17. Chandrabhan Verma, M.A. Quraishi. Chelation capability of chitosan and chitosan derivatives: Recent developments in sustainable corrosion inhibition and metal decontamination applications. Current Research in Green and Sustainable Chemistry, 2021, 4: 100184. DOI:10.1016/j.crgsc.2021.100184
    18. I.A. Wonnie Ma, Ammar Sh., Shahid Bashir, Sachin S. A Kumar, Ramesh K, Ramesh S Development of active barrier effect of hybrid chitosan/silica composite epoxy-based coating on mild steel surface. Surfaces and Interfaces, 2021, 25: 101250. DOI:10.1016/j.surfin.2021.101250
    19. Geetisubhra Jena, B. Anandkumar, S.C. Vanithakumari, et al. Graphene oxide-chitosan-silver composite coating on Cu-Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications. Progress in Organic Coatings, 2020, 139: 105444. DOI:10.1016/j.porgcoat.2019.105444
    20. Habib Ashassi-Sorkhabi, Amir Kazempour. Chitosan, its derivatives and composites with superior potentials for the corrosion protection of steel alloys: A comprehensive review. Carbohydrate Polymers, 2020, 237: 116110. DOI:10.1016/j.carbpol.2020.116110
    21. Amany M. Fekry, Rasha A. Ahmed, Sabreen A. Bioumy. Silver Nanoparticle/Graphene Oxide/Chitosan Coatings for Protection of Surfaces in Food Processing. Journal of Bio- and Tribo-Corrosion, 2020, 6(4) DOI:10.1007/s40735-020-00402-6
    22. M. Kovendhan, Hari Kang, Sangmin Jeong, et al. Study of stainless steel electrodes after electrochemical analysis in sea water condition. Environmental Research, 2019, 173: 549. DOI:10.1016/j.envres.2019.03.069
    23. I.G. Akande, O.O. Oluwole, O.S.I. Fayomi. Optimizing the defensive characteristics of mild steel via the electrodeposition of Zn Si3N4 reinforcing particles. Defence Technology, 2019, 15(4): 526. DOI:10.1016/j.dt.2018.11.001
    24. Zhi-jun Gao, Jing-yuan Li, Zhi-hui Feng, et al. Influence of hot rolling on the microstructure of lean duplex stainless steel 2101. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(10): 1266. DOI:10.1007/s12613-019-1841-6
    25. C.A. Loto, O.S.I. Fayomi, R.T. Loto, et al. Potentiodynamic Polarization and Gravimetric Evaluation of Corrosion of Copper in 2M H2SO4 and its inhibition with Ammonium Dichromate. Procedia Manufacturing, 2019, 35: 413. DOI:10.1016/j.promfg.2019.05.061
    26. M. Kovendhan, Hari Kang, Jong Sang Youn, et al. Alternative cost-effective electrodes for hydrogen production in saline water condition. International Journal of Hydrogen Energy, 2019, 44(11): 5090. DOI:10.1016/j.ijhydene.2018.08.038
    27. O. S. I. Fayomi, I. G. Akande, A. P. I. Popoola. Corrosion Protection Effect of Chitosan on the Performance Characteristics of A6063 Alloy. Journal of Bio- and Tribo-Corrosion, 2018, 4(4) DOI:10.1007/s40735-018-0192-6
    28. O.S.I. Fayomi, I.G. Akande, O.O. Oluwole, et al. Effect of water-soluble chitosan on the electrochemical corrosion behaviour of mild steel. Chemical Data Collections, 2018, 17-18: 321. DOI:10.1016/j.cdc.2018.10.006
    29. Saviour A. Umoren, Moses M. Solomon, Viswanathan S. Saji. Polymeric Materials in Corrosion Inhibition. DOI:10.1016/B978-0-12-823854-7.00006-0
    30. Elyor Berdimurodov, Abduvali Kholikov, Khamdam Akbarov, et al. Grafted Biopolymers as Corrosion Inhibitors. DOI:10.1002/9781119881391.ch13
    31. K. M. Oluwasegun, O. S. I. Fayomi, A. P. I. Popoola, et al. Efficacy of surface active cotrimoxazole drugs on 1xxx aluminium series in acidic media. TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES21Gr, DOI:10.1063/5.0092410

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (713) PDF downloads (23) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return