Cite this article as: |
Jian-long Guo, Yan-ping Bao, and Min Wang, Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes, Int. J. Miner. Metall. Mater., 24(2017), No. 12, pp. 1370-1378. https://doi.org/10.1007/s12613-017-1529-8 |
Yan-ping Bao E-mail: baoyp@ustb.edu.cn
[1] |
H. Tsunekawa, T. Yamashita, T. Aoyama, and R. Sugihara, Mechanism of formation of streak-shaped defects on ultra-low carbon IF steel for automobile outer panels after press forming and influence of slab reheating temperature before hot rolling and Sb-addition on defects, Tetsu-to-Hagane, 102(2016), No. 4, p. 202.
|
[2] |
P. Palai, P.P. Sahoo, A. Dey, T.K. Roy, and V.V. Mahashabde, Constitutional segregation of Al2O3, in mold slag and its impact on steel cleanliness during continuous casting, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1185.
|
[3] |
J.O. Jo, W.Y. Kim, D.S. Kim, and J.J. Pak, Thermodynamics of titanium, nitrogen, and oxygen in liquid alloy steels, Met. Mater. Int., 14(2008), No. 4, p. 531.
|
[4] |
Y.M. Qin, X.H. Wang, F.X. Huang, B. Chen, and C.X. Ji, Influence of reoxidation by slag and air on inclusions in IF steel, Metall. Res. Technol., 112(2015), No. 4, art. No. 405.
|
[5] |
E. Gutiérrez, S. Garcia-Hernandez, and J.D.J. Barreto, Mathematical analysis of the dynamic effects on the deposition of alumina inclusions inside the upper tundish nozzle, ISIJ Int., 56(2016), No. 8, p. 1394.
|
[6] |
P.H. Li, Y.P. Bao, F. Yue, and J. Huang, BOF end-point control of ultra low carbon steel, Iron Steel, 46(2011), No. 10, p. 27.
|
[7] |
S. Basu, S.K. Choudhary, and N.U. Girase, Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel, ISIJ Int., 44(2004), No. 10, p. 1653.
|
[8] |
F. Zhang and G.Q. Li, Control of ultra low titanium in ultra low carbon Al-Si killed steel, J. Iron Steel Res. Int., 20(2013), No. 4, p. 20.
|
[9] |
Y.M. Qin, X.H. Wang, L.P. Li, and F.X. Huang, Effect of oxidizing slag on cleanliness of IF steel during ladle holding process, Steel Res. Int., 86(2015), No. 9, p. 1037.
|
[10] |
C.Y. Liu, F.X. Huang, and X.H. Wang, The effect of refining slag and refractory on inclusion transformation in extra low oxygen steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 999.
|
[11] |
E. Zinngrebe, C.V. Hoek, H. Visser, A. Westendorp, and I.H. Jung, Inclusion population evolution in Ti-alloyed Al-killed steel during secondary steelmaking process, ISIJ. Int., 52(2012), No. 1, p. 52.
|
[12] |
M. Wang, Y.P. Bao, Q. Yang, L.H. Zhao, and L. Lu, Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process, Int. J. Miner. Metall. Mater., 22(2015), No. 12, p. 1252.
|
[13] |
W.C. Doo, D.Y. Kim, S.C. Kang, and K.W. Yi, The morphology of Al-Ti-O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process, Met. Mater. Int., 13(2007), No. 3, p. 249.
|
[14] |
W. Yang, X.H. Wang, L.F. Zhang, Q.L. Shan, and X.F. Liu, Cleanliness of low carbon aluminum-killed steels during secondary refining processes, Steel Res. Int., 84(2013), No. 5, p. 473.
|
[15] |
B.H. Yoon, K.H. Heo, J.S. Kim, and H.S. Sohn, Improvement of steel cleanliness by controlling slag composition, Ironmaking Steelmaking, 29(2002), No. 3, p. 214.
|
[16] |
M.K. Sun, I.H. Jung, and H.G. Lee, Morphology and chemistry of oxide inclusions after Al and Ti complex deoxidation, Met. Mater. Int., 14(2008), No. 6, p. 791.
|