Cite this article as: |
Long Meng, Zhan-cheng Guo, Jing-kui Qu, Tao Qi, Qiang Guo, Gui-hua Hou, Peng-yu Dong, and Xin-guo Xi, Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 20-27. https://doi.org/10.1007/s12613-018-1542-6 |
Qiang Guo E-mail: qguo@home.ipe.ac.cn
[1] |
B.Q. Wang, Q. Guo, G.Y. Wei, P.Y. Zhang, J.K. Qu, and T. Qi, Characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia, Hydrometallurgy, 129-130(2012), p. 7.
|
[2] |
B.Q. Wang, Q. Guo, J.K. Qu, and T. Qi, Optimization of conditions in atmospheric acid leaching of the water-leached residue of limonitic laterite after alkali-roasting, Chin. J. Process Eng., 12(2012), No. 3, p. 420.
|
[3] |
Q. Guo, J.K. Qu, T. Qi, P.Y. Zhang, M.L. Shi, and L. Meng, A Method of Hydrochloric Acid Atmospheric Nickel Laterite Leaching Process of Ni/Co/Fe/Si Separation and Utilization of Clean Production, Chinese Patent, Appl.103757261, 2014.
|
[4] |
Q. Guo, J.K. Qu, B.B. Han, P.Y. Zhang, Y.X. Song, and T. Qi, Innovative technology for processing saprolitic laterite ores by hydrochloric acid atmospheric pressure leaching, Miner. Eng., 71(2015), p. 1.
|
[5] |
L. Meng, J.K. Qu, Q. Guo, K.Q. Xie, P.Y. Zhang, L.X. Han, G.Z. Zhang, and T. Qi, Recovery of Ni, Co, Mn, and Mg from nickel laterite ores using alkaline oxidation and hydrochloric acid leaching, Sep. Purif. Technol., 143(2015), p. 80.
|
[6] |
L. Meng, J.K. Qu, K.Q. Xie, P.Y. Zhang, L.X. Han, G.Z. Zhang, and T. Qi, Preparation of Ni from nickel laterite leaching solution by anion membrane electrolysis method, Chin. J. Nonferrous Met., 25(2015), No. 4, p. 1093.
|
[7] |
L. Lv, Y.G. Su, X.Q. Liu, H.Y. Zheng, and X.J. Wang, Synthesis of cellular-like Co3O4 nanocrystals with controlled structural, electronic and catalytic properties, J. Alloys Compd., 553(2013), p. 163.
|
[8] |
E. Lester, G. Aksomaityte, J. Li, S. Gomez, G.G. Jose, and P. Martyn, Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles, Prog. Cryst. Growth Charact. Mater., 58(2012), No.1, p. 3.
|
[9] |
K. Deori, S.K. Ujjain, R.K. Sharma, and S. Deka, Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors, ACS Appl. Mater. Interfaces, 5(2013), No. 21, p. 10665.
|
[10] |
H.J. Zhao, M.B. Zheng, D.M. Liu, X.H. Jiang, J. Tao, and J.M. Cao, Synthesis and characterization of nanoporous Co3O4 via a solvothermal-annealing route, Nanoporous Mater., 2008, p. 195. https://doi.org/10.1142/9789812779168_0022.
|
[11] |
P.N. Shelke, Y.B. Khollam, K.R. Patil, S.D. Gunjal, M.T. Sarode, M.G. Takwale, S.R. Jadkar, and K.C. Mohite, Synthesis and optical properties of cobalt oxide (Co3O4) nanoclustered films produced by pulsed DC electrochemical deposition process, AIP Conf. Proc., 1391(2011), No. 1, p. 2541.
|
[12] |
N. Zhang, Y.Q. Fan, H.Q. Fan, H.B. Shao, J.M. Wang., J.Q. Zhang, and C.A. Cao, Cross-linked Co3O4 nanowalls synthesized by electrochemical oxidation of metallic cobalt layer for oxygen evolution, ECS Electrochem. Lett., 1(2012), No. 2, p. H8.
|
[13] |
G.B. Ma, S.H. Zhou, and S.S. Huang, Micromave hydrothermal synthesis and characterization of Co3O4 nanocrystals, Int. J. Mod. Phys. B, 19(2012), No. 15-17, p. 2841.
|
[14] |
C. Shin, J. Manuel, D.S. Kim, H.S. Ryu, H.J. Ahn, and J.H. Ahn, Structural characterization and electrochemical properties of Co3O4 anode materials synthesized by a hydrothermal method, Nanoscale Res. Lett., 7(2012), p. 73.
|
[15] |
K. Agilandeswari and A. Rubankumar, Synthesis, characterization, optical, and magnetic properties of Co3O4 nanoparticles by quick precipitation, Synth. React. Inorg. Met.-Org. Chem., 46(2016), No. 4, p. 502.
|
[16] |
V.R. Mate, A. Jha, U.D. Joshi, K.R. Patil, M. Shirai, and C.V. Rode, Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates, Appl. Catal. A, 487(2014), p. 130.
|
[17] |
G.L. Xu, J.T. Li, L. Huang, W.F. Li, and S.G. Sun, Synthesis of Co3O4 nano-octahedra enclosed by {111} facets and their excellent lithium storage properties as anode material of lithium ion batteries, Nano Energy, 2(2013), No. 3, p. 394.
|
[18] |
W. Wen, J.M. Wu, and M.H. Cao, Facile synthesis of a mesoporous Co3O4 network for Li-storage via thermal decomposition of an amorphous metal complex, Nanoscale, 6(2014), No. 21, p. 12476.
|
[19] |
S. Kannan and C.S. Swamy, Synthesis and physicochemical characterization of cobalt aluminium hydrotalcite, J. Mater. Sci. Lett., 11(1992), p. 1585.
|
[20] |
Y.S. Ding, L.P. Xu, C.H. Chen, X.F. Shen, and S.L. Sui, Syntheses of nanostructures of nobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method, J. Phys. Chem. C, 112(2008), No. 22, p. 8177.
|
[21] |
L. Zhang, Z.B. Wang, X.W. Yu, C.H. Wu, and C. Shan, Thermal dissociation mechanism and morphological inheritance of basic cobalt carbonate, Mater. Sci. Eng. Powder Metall., 15(2010), No. 6, p. 679.
|
[22] |
R.J. Yu, P.F. Tao, X.S. Zhou, and Y.P. Fang, Hydrothermal synthesis of cobalt-basic-carbonate nanobelts, J. Alloys Compd., 461(2008), No. 1-2, p. 574.
|
[23] |
Y.D. Meng, D.R. Chen, and X.L. Jiao, Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites, J. Phys. Chem. B, 110(2006), No. 31, p. 15212.
|
[24] |
Mostafa Y. Nassar, Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method, Mater. Lett., 94(2013), p. 112.
|
[25] |
X.L. He, S.Z. Zhao, and S.H. Wu, Analytical Chemistry, Bei-jing University of Technology Press, Beijing, 1996, p. 239.
|
[26] |
E. Lester, G. Aksomaityte, J. Li, S. Gomez, J. Gonzalez-Gonzalez, and M. Poliakoff, Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles, Prog. Cryst. Growth Charact. Mater., 58(2012), No. 1, p. 3.
|
[27] |
M.W. Huang, L. Song, and J.C. Zhang, Study on preparation of cobalt oxalate particles by liquid precipitation process, Inorg. Chem. Ind., 40(2008), No. 4, p. 31.
|
[28] |
L.L. Li, Y. Chu, Y. Liu, J.L. Song, D. Wang, and X.W. Du, A facile hydrothermal route to synthesize novel Co3O4 nanoplates, Mater. Lett., 62(2008), No. 10-11, p. 1507.
|
[29] |
S.J. Davarpanah, R. Karimian, and F. Piri, Synthesis and characterization of Co3O4 nanotubes to prepare variety of electrochemical biosensors, J. Appl. Biotechnol. Rep., 1(2014), No. 3, p. 117.
|
[30] |
H.J. Guo, Q.M. Sun, X.H. Li, Z.X. Wang, and W.J. Peng, Synthesis and electrochemical performance of Co3O4/C composite anode for lithium ion batteries, Trans. Nonferrous Met. Soc. China, 19(2009), No. 2, p. 372.
|
[31] |
C.J. Wang, X. Dang, X.L. Ma, and B. Xu, Research for production technology of cobaltosic oxide, Met. Funct. Mater., 21(2014), No. 2, p. 36.
|
[32] |
P. Justin, S.K. Meher, and G.R. Rao, Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis, J. Phys. Chem. C, 114(2010), No. 11, p. 5203.
|
[33] |
S.K. Meher, P. Justin, and G.R. Rao, Nanoscale morphology dependent pseudocapacitance of NiO:Influence of intercalating anions during synthesis, Nanoscale, 3(2011), No. 2, p. 683.
|
[34] |
L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, and Y.Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun., 2(2011), p. 381.
|
[35] |
L.B. Kong, Y.G. Li, M.C. Liu, Y.C. Luo, and L. Kang, Preparation and supercapacitive properties evaluation of Co3O4 nanoparticles, Appl. Chem. Ind., 44(2012), No. 1, p. 102.
|
[36] |
L.J. Xie, K.X. Li, G.H. Sun, Z.G. Hu, C.X. Lv, J.L. Wang, and C.M. Zhang, Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material, J. Solid State Electrochem., 17(2013), No. 1, p. 55.
|