Li-zi He, Yi-heng Cao, Yi-zhou Zhou,  and Jian-zhong Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 62-72. https://doi.org/10.1007/s12613-018-1547-1
Cite this article as:
Li-zi He, Yi-heng Cao, Yi-zhou Zhou,  and Jian-zhong Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 62-72. https://doi.org/10.1007/s12613-018-1547-1
Research Article

Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys

+ Author Affiliations
  • Corresponding author:

    Li-zi He    E-mail: helizi@epm.neu.edu.cn

  • Received: 19 April 2017Revised: 14 July 2017Accepted: 9 August 2017
  • Effects of Ag addition on the microstructures, aging characteristics, tensile properties, electrochemical properties, and intergranular corrosion (IGC) properties of Al-1.1Mg-0.8Si-0.9Cu-0.35Mn-0.02Ti alloy were investigated using scanning electronic microscopy and transmission electronic microscopy. The aging process of Al-Mg-Si-Cu alloys was accelerated by the addition of Ag. The strength of peak-aged Al-Mg-Si-Cu alloys was enhanced by Ag addition because of the high density of β"- and L-phase age-hardening precipitates. The corrosion performance of the Al-Mg-Si-Cu alloy is closely related to the aging conditions and is independent of the Ag content. The IGC susceptibility is serious in the peak-aged alloy because of the continuous distribution of Cu-rich Q-phase precipitates along grain boundaries. Ag addition reduces the size of the grain-boundary-precipitate Q phase and the width of the precipitate-free zone and thus results in decreased IGC susceptibility of Al-Mg-Si-Cu alloys.
  • loading
  • [1]
    A. Heidarzadeh, M. Emamy, A. Rahimzadeh, R. Soufi, D. Sohrabi Baba Heidary, and Sh. Nasibi, The effect of copper addition on the fluidity and viscosity of an Al-Mg-Si alloy, J. Mater. Eng. Perform., 23(2014), No. 2, p. 469.
    [2]
    M.S. Silva, C. Barbosa, O. Acselrad, and L.C. Pereira, Effect of chemical composition variation on microstructure and mechanical properties of a 6060 aluminum alloy, J. Mater. Eng. Perform., 13(2004), No. 2, p. 129.
    [3]
    J. Chaudhurl, Y.M. Tan, V. Gondhalekar, and K.M. Patni, Comparison of corrosion-fatigue properties of pre-corroded 6013 bare and 2024 bare aluminum alloy sheet materials, J. Mater. Eng. Perform., 3(1994), No. 3, p. 371.
    [4]
    H. Uchida, H. Yoshida, H. Hira, and T. Amano, Development of high strength Al-Mg-Si-Cu alloy with corrosion resistance, Mater. Sci. Forum, 217-222(1996), p. 1753.
    [5]
    F. Delmas, M.J. Casanove, P. Lours, A. Couret, and A. Coujou, Quantitative TEM study of the precipitation microstructure in aluminium alloy Al(MgSiCu) 6056 T, Mater. Sci. Eng. A, 373(2004), No. 1-2, p. 80.
    [6]
    S.C. Bergsma and M.E. Kassner, The new aluminum alloy AA6069, Mater. Sci. Forum, 217-222(1996), p. 1801.
    [7]
    C.H. Liu, X.M. Zhang, J.G. Tang, X.X. Liu, and L. Chen, Effect of copper on precipitation and baking hardening behavior of Al-Mg-Si alloys, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2289.
    [8]
    K. El-Menshawy, A.W.A. El-Sayed, M.E. El-Bedawy, H.A. Ahmed, and S.M. El-Raghy, Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061, Corros. Sci., 54(2012), No. 1, p. 167.
    [9]
    G. Svenningsen, M.H. Larsen, J.H. Nordlien, and K. Nisancioglu, Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy, Corros. Sci., 48(2006), No. 12, p. 3969.
    [10]
    G. Svenningsen, M.H. Larsen, J.C. Walmsley, J.H. Nordlien, and K. Nisancioglu, Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corros. Sci., 48(2006), No. 6, p. 1528.
    [11]
    G. Svenningsen, M.H. Larsen, J.H. Nordlien, and K. Nisancioglu, Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy, Corros. Sci., 48(2006), No. 1, p. 258.
    [12]
    G. Svenningsen, J.E. Lein, A. Bjørgum, J.H. Nordlien, Y.D. Yu, and K. Nisancioglu, Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys, Corros. Sci., 48(2006), No. 1, p. 226.
    [13]
    I.J. Polmear and M.J. Coupter, Design and development of an experimental wrought aluminum alloy for use at elevated temperatures, Metall. Trans. A, 19(1988), No. 4, p. 1027.
    [14]
    S. Wenner, C.D. Marioara, Q.M. Ramasse, D.M. Kepaptsoglou, F.S. Hage, and R. Holmestad, Atomic-resolution electron energy loss studies of precipitates in an Al-Mg-Si-Cu-Ag alloy, Scripta Mater., 74(2014), p. 92.
    [15]
    J.H. Kim, C.D. Marioara, R. Holmestad, E. Kobayashi, and T. Sato, Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys, Mater. Sci. Eng. A, 560(2013), p. 154.
    [16]
    J. Nakamura, K. Matsuda, T. Kawabata, T. Sato, Y. Nakamura, and S. Ikeno, Effect of silver addition on the β'-phase in Al-Mg-Si-Ag alloy, Mater. Trans., JIM, 51(2010), No. 2, p. 310.
    [17]
    S. Kuroda and K. Tohma, Effect of Cu and Zn addition on electrochemical properties of Al-Si brazing filler, J. Jpn. Inst. Light Met., 48(1998), No. 9, p. 465.
    [18]
    C. Blanc, Y. Roques, and G. Mankowski, Application of phase shifting interferometric microscopy to studies of the behaviour of coarse intermetallic particles in 6056 aluminium, Corros. Sci., 40(1998), No. 6, p. 1019.
    [19]
    R.A. Jeniski, B. Thanaboonsombut, and T.H. Sanders, The effect of iron and manganese on the recrystallization behavior of hot-rolled and solution-heat-treated aluminum alloy 6013, Metall. Mater. Trans. A, 27(1996), No. 1, p. 19.
    [20]
    A. Nemura, T. Ohno, S. Kamado, Y. Kojima, R. Masuda, and K. Oosumi, Recycling and environmental problem. Effect of remained vanadium on microstructure and various properties of 6061 aluminum alloy, J. Jpn. Inst. Light Met., 46(1996), No. 46, p. 570.
    [21]
    C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, and R. Holmestad, The effect of Cu on precipitation in Al-Mg-Si alloys, Philos. Mag., 87(2007), No. 23, p. 3385.
    [22]
    M. Torsæter, W. Lefebvre, C.D. Marioara, S.J. Andersen, J.C. Walmsley, and R. Holmestad, Study of intergrown L and Q' precipitates in Al-Mg-Si-Cu alloys, Scripta Mater., 64(2011), p. 817.
    [23]
    D.J. Chakrabarti and D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Prog. Mater. Sci., 49(2004), No. 3-4, p. 389.
    [24]
    M.H. Jacobs, The structure of the metastable precipitates formed during aging of an Al-Mg-Si alloy, Philos. Mag., 26(1972), No. 1, p. 1.
    [25]
    S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, 34(2003), No. 3, p. 751.
    [26]
    T.D. Burleigh, E. Ludwiczak, and R.A. Petri, Intergranular corrosion of an aluminum-magnesium-silicon-copper alloy, Corrosion, 51(1995), No. 1, p. 50.
    [27]
    G.S. Frankel, The growth of 2-D pits in thin film aluminum, Corros. Sci., 30(1990), No. 12, p. 1203.
    [28]
    K. Sugimoto, Y. Sawada, and Morioka, Effects of alloying elements on the pitting corrosion of aluminum, Trans. Jpn. Inst. Met., 13(1972), No. 5, p. 345.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(567) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return