Tong Chen, Li-hua Yu, and Jun-hua Xu, Influence of Ag content on the microstructure, mechanical, and tribological properties of TaVN-Ag films, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 110-115. https://doi.org/10.1007/s12613-018-1553-3
Cite this article as:
Tong Chen, Li-hua Yu, and Jun-hua Xu, Influence of Ag content on the microstructure, mechanical, and tribological properties of TaVN-Ag films, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 110-115. https://doi.org/10.1007/s12613-018-1553-3
Research Article

Influence of Ag content on the microstructure, mechanical, and tribological properties of TaVN-Ag films

+ Author Affiliations
  • Corresponding author:

    Li-hua Yu    E-mail: lhyu6@just.edu.cn

  • Received: 21 April 2017Revised: 3 August 2017Accepted: 9 August 2017
  • A series of TaVN-Ag nanocomposite films were deposited using a radio-frequency magnetron sputtering system. The microstructure, mechanical properties, and tribological performance of the films were investigated. The results showed that TaVN-Ag films were composed of face-centered cubic (fcc) TaVN and fcc-Ag. With increasing Ag content, the hardness of TaVN-Ag composite films first increased and then decreased rapidly. The maximum hardness value was 31.4 GPa. At room temperature, the coefficient of friction (COF) of TaVN-Ag films decreased from 0.76 to 0.60 with increasing Ag content from 0 to 7.93at%. For the TaVN-Ag films with 7.93at% Ag, COF first increased and then decreased rapidly from 0.60 at 25℃ to 0.35 at 600℃, whereas the wear rate of the film increased continuously from 3.91×10-7 to 19.1×10-7 mm3/(N·mm). The COF of the TaVN-Ag film with 7.93at% Ag was lower than that of the TaVN film, and their wear rates showed opposite trends with increasing temperature.
  • loading
  • [1]
    C.C. Liu, M.H. Weng, C.T. Wang, J.H. Chen, Y.C. Chou, and H.W. Yaw, An investigation of structure and wear properties of TiN/NbN films deposited by reactive magnetron sputtering, Key Eng. Mater., 368-372(2008), p. 1310.
    [2]
    M. Akbazadeh, A. Shafyei, and H.R. Salimijazi, Comparison of the CrN, TiN and (Ti, Cr)N PVD coatings deposited by cathodic arc evaporation, Iran. J. Mater. Sci. Technol., 12(2015), No. 1, p. 43.
    [3]
    Z.W. Wu, F. Zhou, Q.W. Wang, Z.F. Zhou, J.W. Yan, and L.K.Y. Li, Influence of trimethylsilane flow on the microstructure, mechanical and tribological properties of CrSiCN coatings in water lubrication, Appl. Surf. Sci., 355(2015), p. 516.
    [4]
    L.H. Yu, Y. Li, H.B. Ju, and J.H. Xu, Microstructure, mechanical and tribological properties of magnetron sputtered VCN films, Surf. Eng., 33(2017), No. 12, p. 919.
    [5]
    H.B. Ju, L.H. Yu, S. He, I. Asemoah, J.H, Xu, and Y. Hou, The enhancement of fracture toughness and tribological properties of the titanium nitride films by doping yttrium, Surf. Coat. Technol., 321(2017), p. 57.
    [6]
    J.H. Xu, H.B. Ju, and L.H. Yu, Microstructure, oxidation resistance, mechanical and tribological properties of Mo-Al-N films by reactive magnetron sputtering, Vacuum, 103(2014), p. 21.
    [7]
    L. Hultman, Thermal stability of nitride thin films, Vacuum, 57(2000), No. 1, p. 1.
    [8]
    L.W. Lin, B. Liu, D. Ren, C.Y. Zhan, G.H. Jiao, and K.W. Xu, Effect of sputtering bias voltage on the structure and properties of Zr-Ge-N diffusion barrier films, Surf. Coat. Technol., 228(2013), Suppl. 1, p. S237.
    [9]
    S. Komiyama, Y. Sutou, K. Oikawa, J. Koike, M. Wang, and M. Sakurai, Wear and oxidation behavior of reactive sputtered δ-(Ti,Mo)N films deposited at different nitrogen gas flow rates, Tribol. Int., 87(2015), p. 32.
    [10]
    T.S. Kumar, S.B. Prabu, G. Manivasagam, and K.A. Padmanabhan, Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 796.
    [11]
    H.B. Ju, L.H. Yu, D. Yu, I. Asempah, and J.H. Xu, Microstructure, mechanical and trobological properties of TiN-Ag films deposited by reactive magnetron sputtering, Vacuum, 141(2017), p. 82.
    [12]
    H.B. Ju and J.H. Xu, Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering, Appl. Surf. Sci., 355(2015), p. 878.
    [13]
    C.P. Mulligan and D. Gall, CrN-Ag self-lubricating hard coatings, Surf. Coat. Technol., 200(2005), No. 5-6, p. 1495.
    [14]
    C.P. Mulligan, T.A. Blanchet, and D. Gall, CrN-Ag nanocomposite coatings:High-temperature tribological response, Wear, 269(2010), No. 1-2, p. 125.
    [15]
    C.P. Mulligan, T.A. Blanchet, and D. Gall, CrN-Ag nanocomposite coatings:Tribology at room temperature and during a temperature ramp, Surf. Coat. Technol., 204(2010), No. 9, p. 1388.
    [16]
    S.M. Aouadi, D.P. Singh, D.S. Stone, K. Polychronopoulou, F. Nahif, C. Rebholz, C. Muratore, and A.A. Voevodin, Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000℃, Acta Mater., 58(2010), No. 16, p. 5326.
    [17]
    D.V. Shtansky, A.V. Bondarev, Ph.V. Kiryukhantsev-Korneev, T.C. Rojas, V. Godinho, and A. Fernández, Structure and tribological properties of MoCN-Ag coatings in the temperature range of 25-700℃, Appl. Surf. Sci., 273(2013), p. 408.
    [18]
    T. Laurila, K. Zeng, J.K. Kivilahti, J. Molarius, T. Riekkinen, and I. Suni, Tantalum carbide and nitride diffusion barriers for Cu metallisation, Microelectron. Eng., 60(2002), No. 1-2, p. 71.
    [19]
    A. Kaushal and D. Kaur, Effect of Mg content on structural, electrical and optical properties of Zn1-xMgxO nanocomposite thin films, Sol. Energy Mater. Sol. Cells, 93(2009), No. 2, p. 193.
    [20]
    H.L. Zhang, J.F. Li, B.P. Zhang, and W. Jiang, Enhanced mechanical properties in Ag-particle-dispersed PZT piezoelectric composites for actuator applications, Mater. Sci. Eng. A, 498(2008), No. 1-2, p. 272.
    [21]
    H. Köstenbauer, G.A. Fontalvo, C. Mitterer, and J. Keckes, Tribological properties of TiN/Ag nanocomposite coatings, Tribol. Lett., 30(2008), No. 1, p. 53.
    [22]
    S.Y. Tan, X.H. Zhang, X.J. Wu, F. Fang, and J.Q. Jiang, Effect of copper content and substrate bias on structure and mechanical properties of reactive sputtered CrCuN films, J. Alloys Compd., 509(2011), No. 3, p. 789.
    [23]
    S.M. Aouadi, P. Basnyat, Y. Zhang, Q. Ge, and P. Filip, Grain boundary sliding mechanisms in ZrN-Ag, ZrN-Au, and ZrN-Pd nanocomposite films, Appl. Phys. Lett., 88(2006), No. 2, p. 741.
    [24]
    K.E. Pappacena, D. Singh, O.O. Ajayi, J.L. Routbort, O.L. Erilymaz, N.G. Demas, and G. Chen, Residual stresses, interfacial adhesion and tribological properties of MoN/Cu composite coatings, Wear, 278-279(2012), p. 62.
    [25]
    N. Fateh, G.A. Fontalvo, G.A. Gassner, and C. Mitterer, Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings, Wear, 262(2007), No. 9-10, p. 1152.
    [26]
    Q. Luo, Temperature dependent friction and wear of magnetron sputtered coating TiAlN/VN, Wear, 271(2011), No. 9-10, p. 2058.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(496) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return