Cite this article as: |
Nag-Choul Choi, Kang Hee Cho, Bong Ju Kim, Soonjae Lee, and Cheon Young Park, Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 262-270. https://doi.org/10.1007/s12613-018-1569-8 |
Soonjae Lee E-mail: soonjam@korea.ac.kr
Cheon Young Park E-mail: cybpark@chosun.ac.kr
[1] |
M. Climo, H.R. Watling, and W. Van Bronswijk, Biooxidation as pre-treatment for a telluride-rich refractory gold concentrate, Miner. Eng., 13(2000), No. 12, p. 1219.
|
[2] |
P. Fulignati and A. Sbrana, Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa volcano (Vulcano, Italy), J. Volcanol. Geotherm. Res., 86(1998), No. 1-4, p. 187.
|
[3] |
P.G. Spry and S.E. Thieben, Two new occurrences of benleonardite, a rare silver-tellurium sulphosalt, and a possible new occurrence of cervelleite, Mineral. Mag., 60(1996), No. 1, p. 871.
|
[4] |
P. Voudouris, M. Tarkian, and K. Arikas, Mineralogy of telluride-bearing epithermal ores in the Kassiteres-Sappes area, western Thrace, Greece, Mineral. Petrol., 87(2006), No. 1-2, p. 31.
|
[5] |
D.W. Pals and P.G. Spry, Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji, Mineral. Petrol., 79(2003), No. 3, p. 285.
|
[6] |
K. Bosecker, Bioleaching:metal solubilization by microorganisms, FEMS Microbiol. Rev., 20(1997), No. 3-4, p. 591.
|
[7] |
C.H. Hus and R.G. Harrison, Bacterial leaching of zinc and copper from mining waste, Hydrometallurgy, 37(1995), No. 2, p. 169.
|
[8] |
N.F. Lei and H.G. Xie, Bioleaching of low grade tellurium sulfide mineral, Energy Procedia, 16(2012), p. 946.
|
[9] |
K. Bosecker, A.E. Torma, and J.A. Brierley, Microbiological leaching of a chalcopyrite concentrate and the influence of hydrostatic pressure on the activity of Thiobacillus ferrooxidans, Eur. J. Appl. Microbiol. Biotechnol., 7(1979), No. 1, p. 85.
|
[10] |
José A. Rojas-Chapana and H. Tributsch, Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite, FEMS Microbiol. Ecol., 47(2004), No. 1, p. 19.
|
[11] |
L.X. Xia, X.X. Liu, J. Zeng, C. Yin, J. Gao, J.S. Liu, and G.Z. Qiu, Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite, Hydrometallurgy, 92(2008), No. 3-4, p. 95.
|
[12] |
F. Vegliò, M. Trifoni, F. Pagnanelli, and L. Toro, Shrinking core model with variable activation energy:a kinetic model of manganiferous ore leaching with sulphuric acid and lactose, Hydrometallurgy, 60(2001), No. 2, p. 167.
|
[13] |
H. Tan, D. Feng, G.C. Lukey, and J.S.J. van Deventer, The behaviour of carbonaceous matter in cyanide leaching of gold, Hydrometallurgy, 78(2005), No. 3-4, p. 226.
|
[14] |
N.J. Cook and C.L. Ciobanu, Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts, Romania:Paragenesis and genetic significance, Miner. Mag., 68(2004), No. 2, p. 301.
|
[15] |
V.A. Kovalenker and O.Y. Plotinskaya, Te and Se mineralogy of Ozernovskoe and Prasolovskoe epithermal gold deposits, Kuril-Kamchatka volcanic belt, Geochim. Mineral. Petrol., 43(2005), No. 14-19, p. 118.
|
[16] |
R.K. Amankwah, A.U. Khan, C.A. Pickles, and W.T. Yen, Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore, Trans. Inst. Min. Metall. Sect. C, 114(2005), No. 1, p. 30.
|
[17] |
P. Bhakta and B. Arthur, Heap bio-oxidation and gold recovery at newmont mining:First-year results, JOM, 54(2002), No. 10, p. 31.
|
[18] |
E.B. Lindström, E. Gunneriusson, and O.H. Tuovinen, Bacterial oxidation of refractory sulfide ores for gold recovery, Crit. Rev. Biotechnol., 12(1992), No. 1-2, p. 133.
|
[19] |
A.B. Jensen and C. Webb, Ferrous sulfate oxidation using thiobacillus-ferrooxidans:a review, Process Biochem., 30(1995), No. 3, p. 225.
|
[20] |
Y.A. Attia and M.A. Elzeky, Bioleaching of non-ferrous sulfides with adapted thiophillic bacteria, Chem. Eng. J., 44(1990), No. 2, p. B31.
|
[21] |
S.M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains, Hydrometallurgy, 85(2007), No. 1, p. 59.
|
[22] |
A. Pinches, F.O. Al-Jaid, D.J.A. Williams, and B. Atkinson, Leaching of chalcopyrite concentrates with thiobacillus ferrooxidans in batch culture, Hydrometallurgy, 2(1976), No. 2, p. 87.
|
[23] |
D.F. Haghshenas, E.K. Alamdari, M.A. Torkmahalleh, B. Bonakdarpour, and B. Nasernejad, Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate, Miner. Eng., 22(2009), No. 15, p. 1299.
|
[24] |
V. Sanmugasunderam, R. Branion, and D. Duncan, A growth model for the continuous microbiological leaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans, Biotechnol. Bioeng., 27(1985), No. 8, p. 1173.
|
[25] |
S.Y. Shi and Z.H. Fang, Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor, Int. J. Miner. Process., 76(2005), No. 1-2, p. 3.
|
[26] |
D.E. Rawlings, Heavy metal mining using microbes, Annu. Rev. Microbiol., 56(2002), No. 1, p. 65.
|
[27] |
L. Keller and L.E. Murr, Acid-bacterial and ferric sulfate leaching of pyrite single-crystals, Biotechnol. Bioeng., 24(1982), No. 1, p. 83.
|
[28] |
Z. Zhu, W. Zhang, Y. Pranolo, and C.Y. Cheng, Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction, Hydrometallurgy, 127-128(2012), p. 1.
|