Cite this article as: |
Yan Jia, He-yun Sun, Qiao-yi Tan, Hong-shan Gao, Xing-liang Feng, and Ren-man Ruan, Linking leach chemistry and microbiology of low-grade copper ore bioleaching at different temperatures, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 271-279. https://doi.org/10.1007/s12613-018-1570-2 |
Ren-man Ruan E-mail: rmruan@ipe.ac.cn
[1] |
H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides-A review, Hydrometallurgy, 84(2006), No. 1-2, p. 81.
|
[2] |
W. Zhu, J.L. Xia, Y. Yang, Z.Y. Nie, L. Zheng, C.Y. Ma, R.Y. Zhang, A.A. Peng, L. Tang, and G.Z. Qiu, Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite, Bioresour. Technol., 102(2011), No. 4, p. 3877.
|
[3] |
M. Vera, A. Schippers, and W. Sand, Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation-part A, Appl. Microbiol. Biotechnol., 97(2013), No. 17, p. 7529.
|
[4] |
J.A. Brierley, A perspective on developments in biohydrometallurgy, Hydrometallurgy, 94(2008), No. 1-4, p. 2.
|
[5] |
J. Petersen and D.G. Dixon, Principles, mechanisms and dynamics of chalcocite heap bioleaching,[in] Microbial Processing of Metal Sulfides, Springer, The Netherlands, 2007, p. 193.
|
[6] |
Y. Jia, R.M. Ruan, S.P. Zhong, H.Y. Sun, L.C. Zou, and J.H. Chen, Heap bioleaching of a net-acid generating copper sulfide:comparison of high and low acidity leaching systems,[in] M. Evatz, M.E. Smith, and D.V. Zyl eds. Proceedings of Heap Leach Solutions, Nevada, 2015, p. 357.
|
[7] |
C.Y. Cheng and F. Lawson, The kinetics of leaching chalcocite in acidic oxygenated sulphate-chloride solutions, Hydrometallurgy, 27(1991), No.3, p. 249.
|
[8] |
J. Petersen and D.G. Dixon, The dynamics of chalcocite heap bioleaching,[in] C.A. Yong, A.M. Alfantazi, C.G. Anderson, D.B. Dreisinger, B. Harris, and A. James eds. Hydrometallurgy 2003:Fifth International Conference in Honor of Professor Ian Ritchie, Vancouver, 2003, p. 351.
|
[9] |
S.A. Bolorunduro, Kinetics of Leaching of Chalcocite in Acid Ferric Sulfate Media:Chemical and Bacterial Leaching[Dissertation], University of British Columbia, Canada, 1999, p. 16.
|
[10] |
R.M. Ruan, G. Zou, S.P. Zhong, Z.L. Wu, B. Chan, and D.Z. Wang, Why Zijinshan copper bioheapleaching plant works efficiently at low microbial activity-Study on leaching kinetics of copper sulfides and its implications, Miner. Eng., 48(2013), p. 36.
|
[11] |
X.P. Niu, R.M. Ruan, Q.Y. Tan, Y. Jia, and H.Y. Sun, Study on the second stage of chalcocite leaching in column with redox potential control and its implications, Hydrometallurgy, 155(2015), p. 141.
|
[12] |
H.Y. Sun, M. Chen, L.C. Zou, R.B. Shu, and R.M. Ruan, Study of the kinetics of pyrite oxidation under controlled redox potential, Hydrometallurgy, 155(2015), p. 13.
|
[13] |
P.D. Franzmann, C.M. Haddad, R.B. Hawkes, W.J. Robertson, and J.J. Plumb, Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching bacteria and archaea:application of the Ratkowsky equation, Miner. Eng., 18(2005), No. 13-14, p. 1304.
|
[14] |
R.M. Ruan, X.Y. Liu, G. Zou, J.H. Chen, J.K. Wen, and D.Z. Wang, Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature, and low redox potential for secondary copper sulfide, Hydrometallurgy, 108(2011), No. 1-2, p. 130.
|
[15] |
D.W. Dew, G.F. Rautenbach, R.P. Van Hille, C.S. Davis-Belmar, I.J. Harvey, and J.S. Truelove, High temperature heap leaching of chalcopyrite:Method of evaluation and process model validation,[in] Proceedings of the International Conference on Percolation Leaching:The Status Globally and in South Africa. The SAIMM Symposium Series S69, Johannesburg, 2011, p. 201.
|
[16] |
L.A. Mutch, H.R. Watling, and E.L.J. Watkin, Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns, Hydrometallurgy, 104(2010), No. 3, p. 391.
|
[17] |
H.R. Watling, D.M. Collinson, J. Li, L.A. Mutch, F.A. Perrot, S.M. Rea, F. Reith, and E.L.J. Watkin, Bioleaching of a low-grade copper ore, linking leach chemistry and microbiology, Miner. Eng., 56(2014), No. 2, p. 35.
|
[18] |
M. Lotfalian, M. Ranjbar, M.H. Fazaelipoor, M. Schaffie, and Z. Manafi, The effect of redox control on the continuous bioleaching of chalcopyrite concentrate, Miner. Eng., 81(2015), p. 52.
|
[19] |
T.Z. DeSantis, P. Hugenholtz, K. Keller, E.L. Brodie, N. Larsen, Y.M. Piceno, R. Phan, and G.L. Andersen, NAST:a multiple sequence alignment server for comparative analysis of 16S rRNA genes, Nucleic Acids Res., 34(2006), p. 394.
|
[20] |
M. Dopson, C. Baker-Austin, A. Hind, J.P. Bowman, and P.L. Bond, Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments, Appl. Environ. Microbiol., 70(2004), No. 4, p. 2079.
|
[21] |
O.V. Golyshina, M.M. Yakimov, H. Lünsdorf, M. Ferrer, M. Nimtz, K.N. Timmis, V. Wray, B.J. Tindall, and P.N. Golyshin, Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov., Inter. J. Syst. Evol. Microbiol., 59(2009), No. 11, p. 2815.
|
[22] |
D.B. Johnson, Biodiversity and interactions of acidophiles:Key to understanding and optimizing microbial processing of ores and concentrates, Trans. Nonferrous Met. Soc. China, 18(2008), No. 6, p. 1367.
|
[23] |
N. Okibe and D.B. Johnson, Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors:significance of microbial interactions, Biotechnol. Bioeng., 87(2004), No. 5, p. 574.
|
[24] |
J.L. Slonczewski, M. Fujisawa, M. Dopson, and T.A. Krulwich, Cytoplasmic pH measurement and homeostasis in bacteria and archaea, Adv. Microb. Physiol., 55(2009), p. 1.
|
[25] |
D.E. Rawlings, H. Tributsch, and G.S. Hansford, Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores, Microbiology, 145(1999), No. 1, p. 5.
|
[26] |
P.L. Bond, S.P. Smriga, and J.F. Banfield, Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site, Appl. Environ. Microbiol., 66(2000), No. 9, p. 3842.
|
[27] |
X.Y. Liu, B.W. Chen, J.K. Wen, and R.M. Ruan, Leptospirillum forms a minor portion of the population in Zijinshan commercial non-aeration copper bioleaching heap identified by 16S rRNA clone libraries and real-time PCR, Hydrometallurgy, 104(2010), No. 3-4, p. 399.
|
[28] |
E.L.J. Watkin, S.E. Keeling, F.A. Perrot, D.W. Shiers, M.L. Palmer, and H.R. Watling, Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans, J. Ind. Microbiol. Biotechnol., 36(2009), No. 3, p. 461.
|
[29] |
A.K. Halinen, N.J. Beecroft, K. Määttä, P. Nurmi, K. Laukkanen, A.H. Kaksonen, M. Riekkola-Vanhanen, and J.A. Puhakka, Microbial community dynamics during a demonstration-scale bioheap leaching operation, Hydrometallurgy, 125-126(2012), No. 8, p. 34.
|
[30] |
K.J. Edwards, P.L. Bond, T.M. Gihring, and J.F. Banfield, An archaeal iron-oxidizing extreme acidophile important in acid mine drainage, Science, 287(2000), No. 5459, p. 1796.
|
[31] |
P. Basson, M. Gericke, T.L. Grewar, D.W. Dew, and M.J. Nicol, The effect of sulphate ions and temperature on the leaching of pyrite. Ⅲ. Bioleaching, Hydrometallurgy, 133(2013), No. 133, p.176.
|
[32] |
P.K. Abraitis, R.A.D. Pattrick, and D.J. Vaughan, Variations in the compositional, textural and electrical properties of natural pyrite:a review, Int. J. Miner. Process., 74(2004), No. 1-4, p. 41.
|
[33] |
B. Wu, J.K. Wen, B.W. Chen, G.C. Yao, and D.Z. Wang, Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite, Rare Met., 33(2014), No. 5, p. 622.
|
[34] |
H. Miki, M. Nicol, and L. Velásquez-Yévenes, The kinetics of dissolution of synthetic covellite, chalcocite and digenite in dilute chloride solutions at ambient temperatures, Hydrometallurgy, 105(2011), No. 3, p. 321.
|