Jing Guo, Shu-sen Cheng, Han-jie Guo, and Ya-guang Mei, Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 280-287. https://doi.org/10.1007/s12613-018-1571-1
Cite this article as:
Jing Guo, Shu-sen Cheng, Han-jie Guo, and Ya-guang Mei, Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 280-287. https://doi.org/10.1007/s12613-018-1571-1
Research Article

Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium

+ Author Affiliations
  • Corresponding author:

    Jing Guo    E-mail: guojing@ustb.edu.cn

  • Received: 7 June 2017Revised: 18 September 2017Accepted: 21 September 2017
  • Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al2O3-based inclusions during secondary refining. The results showed that Al2O3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition,[Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO-MgO-Al2O3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between[Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3wt% and the temperature is higher than 1843 K.
  • [1]
    G. Ye, P. Jönsson, and T. Lund, Thermodynamics and kinetics of the modification of Al2O3 inclusions, ISIJ Int., 36(1996), Suppl., p. S105.
    [2]
    Z.Y. Deng and M.Y. Zhu, A new double calcium treatment method for clean steel refining, Steel Res. Int., 84(2013), No. 6, p. 519.
    [3]
    M. Jiang, X.H. Wang, B. Cheng, and W.J. Wang, Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag, ISIJ Int., 50(2010), No. 1, p. 95.
    [4]
    S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee, Formation and modification of MgO·Al2O3-based inclusions in alloy steels, Metall. Mater. Trans. B, 43(2012), No. 4, p. 731.
    [5]
    Z.Y. Deng and M.Y. Zhu, Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process, ISIJ Int., 53(2013), No. 3, p. 450.
    [6]
    J. Guo, S.S. Cheng, Z.J. Cheng, and L. Xin, Thermodynamics for precipitation of CaS bearing inclusion and their deformation during rolling process for Al-killed Ca-treated steel, Steel Res. Int., 84(2013), No. 6, p. 545.
    [7]
    J. Guo, S.S. Cheng, and Z.J. Cheng, Mechanism of non-metallic inclusion formation and modification and their deformation during CSP process for aluminum-killed steel, ISIJ Int., 53(2013), No. 12, p. 2142.
    [8]
    T.S. Zhang, Y. Min, C.J. Liu, and M.F. Jiang, Effect of Mg addition on the evolution of inclusions in Al-Ca deoxidized melts, ISIJ Int., 55(2015), No. 8, p. 1541.
    [9]
    W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao. Effect of Mg and Ca treatment on behavior and particle size of inclusions in bearing steels, ISIJ Int., 54(2014), No. 3, p. 536.
    [10]
    A. Martín, E. Brandaleze, J. Madías, R. Donayo, A. Gómez, and J. Pérez, Study about downgrading variables by inclusionary cleanliness in the laddle furnace at Ternium Siderar,[in] Proceedings of the 7th International Conference of Clean Steel, Balatonfüred, Hungary, 2007, p. 203.
    [11]
    N. Dogan, R.J. Longbottom, M.H. Reid, M.W. Chapman, P. Wilson, L. Moore, and B.J. Monaghan, Morphology and composition changes of spinel (MgAl2O4) inclusions in steel, Ironmaking Steelmaking, 42(2015), No. 3, p. 185.
    [12]
    W.G. Seo, W.H. Han, J.S. Kim, and J.J. Park, Deoxidation equilibria among Mg, Al and O in liquid iron in the presence of MgO Al2O3 spinel, ISIJ Int., 43(2003), No. 2, p. 201.
    [13]
    J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, and P.K. Yang, Formation mechanism of Ca-Si-Al-Mg-Ti-O inclusions in type 304 stainless steel, ISIJ Int., 36(1996), Suppl., p. S140.
    [14]
    W.Y. Cha, D.S. Kim, Y.D. Lee, and J.J. Park, A thermodynamic study on the inclusions formation in ferritic stainless steel melt, ISIJ Int., 44(2004), No. 7, p. 1134.
    [15]
    J.H. Park, Formation mechanism of spinel-type inclusions in high-alloyed stainless steel melts, Metall. Mater. Trans. B, 38(2007), No. 4, p. 657.
    [16]
    Y. Ehara, S. Yokoyama, and M. Kawakami, Formation mechanism of inclusions containing MgO·Al2O3 spinet in type 304 stainless steel, Tetsu-to-Hagane, 93(2007), No. 3, p. 208.
    [17]
    Y. Ehara, S. Yokoyama, and M. Kawakami, Control of formation of spinel inclusion in type 304 stainless steel by slag composition, Tetsu-to-Hagane, 93(2007), No. 7, p. 475.
    [18]
    H. Suito and R. Inoue, Thermodynamics on control of inclusions composition in ultra-clean steels, ISIJ Int., 36(1996), No. 5, p. 528.
    [19]
    J.W. Nybakken, Steelmaking Data Sourcebook, Edited by the Japan Society for the Promotion of Science, Gordon & Breach Science Publishers, New York, 1987, p. 142.
    [20]
    J. Guo, S.S. Cheng, and Z.J. Cheng, Characteristics of deoxidation and desulfurization during LF refining Al-killed steel by highly basic and low oxidizing slag, J. Iron. Steel Res. Int., 21(2014), No. 2, p. 166.
  • Relative Articles

    [1]Chao Pan, Xiao-jun Hu, Jian-chao Zheng, Ping Lin, Kuo-chih Chou. Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1499-1507. doi: 10.1007/s12613-020-1981-8
    [2]Jian-long Guo, Yan-ping Bao, Min Wang. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(12): 1370-1378. doi: 10.1007/s12613-017-1529-8
    [3]Liang Yang, Guo-guang Cheng. Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(8): 869-875. doi: 10.1007/s12613-017-1472-8
    [4]Han-song Yu, Jian-guo Li. Size distribution of inclusions in 12%Cr stainless steel with a wide range of solidification cooling rates[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(11): 1157-1162. doi: 10.1007/s12613-015-1180-1
    [5]Xiao-jing Shao, Xin-hua Wang, Chen-xi Ji, Hai-bo Li, Yang Cui, Guo-sen Zhu. Morphology, size and distribution of MnS inclusions in non-quenched and tempered steel during heat treatment[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(5): 483-491. doi: 10.1007/s12613-015-1097-8
    [6]Xi Cao, Xiu-yun Chuan. Structural characteristics, dispersion, and modification of fibrous brucite[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(1): 82-88. doi: 10.1007/s12613-014-0869-x
    [7]Xiao-xuan Deng, Lin-ping Li, Xin-hua Wang, Yun-qing Ji, Chen-xi Ji, Guo-sen Zhu. Subsurface macro-inclusions and solidified hook character in aluminum-killed deep-drawing steel slabs[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(6): 531-543. doi: 10.1007/s12613-014-0939-0
    [8]Yan-hui Sun, Ya-nan Zeng, Rui Xu, Kai-ke Cai. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1068-1076. doi: 10.1007/s12613-014-1011-9
    [9]Zheng Wu, Jing Li, Cheng-bin Shi, Liang-liang Wang. Effect of magnesium addition on inclusions in H13 die steel[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1062-1067. doi: 10.1007/s12613-014-1010-x
    [10]Yan-ping Zeng, Hong-mei Fan, Xi-shan Xie. Effects of the shape and size of rectangular inclusions on the fatigue cracking behavior of ultra-high strength steels[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(4): 360-364. doi: 10.1007/s12613-013-0735-2
    [11]Yu-nan Wang, Yan-ping Bao, Min Wang, Le-chen Zhang. Precipitation behavior of BN type inclusions in 42CrMo steel[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(1): 28-36. doi: 10.1007/s12613-013-0689-4
    [12]Ali Navaei, Reza Eslami-Farsani, Majid Abbasi. Evaluation and modification of inclusion characteristics in HK40 heatresistant cast steel[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(4): 354-359. doi: 10.1007/s12613-013-0734-3
    [13]Cheng-bin Shi, Xi-chun Chen, Han-jie Guo. Characteristics of inclusions in high-Al steel during electroslag remelting process[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(4): 295-302. doi: 10.1007/s12613-012-0554-x
    [14]Hao Ding, Shou-ci Lu, Gao-xiang Du. Surface modification of wollastonite by the mechano-activated method and its properties[J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(1): 83-88. doi: 10.1007/s12613-011-0404-2
    [15]Jian-hua Liu, Hua-jie Wu, Yan-ping Bao, Min Wang. Inclusion variations and calcium treatment optimization in pipeline steel production[J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(5): 527-534. doi: 10.1007/s12613-011-0473-2
    [16]Shu-feng Yang, Jing-she Li, Zai-fei Wang, Jiao Li, Lin Lin. Modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment[J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(1): 18-23. doi: 10.1007/s12613-011-0394-0
    [17]Jin-feng Huang, Hong-sheng Fang, Yan-kang Zheng. Influence of Re-Ti modification on the high impact wear resistance of high Si bainitic cast steel[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(6): 756-762. doi: 10.1007/s12613-010-0385-6
    [18]Kabamba Tshilombo. Determination of inclusions in liquid steel after calcium treatment[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(1): 28-31. doi: 10.1007/s12613-010-0105-2
    [19]Fangming Yuan, Xinhua Wang, Xuefu Yang. Influence of calcium content on solid ratio of inclusions in Ca-treated liquid steel[J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(6): 486-489. doi: 10.1016/S1005-8850(06)60099-6
    [20]Dongping Duan, Yibo Gong, Ju Wang. Agglomeration Mechanism of Rich Hematite Sinter with Lowering SiO2 Content[J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(4): 256-260.
  • Periodical cited type(14)

    [1]Shucai Zhang, Baohai Lin, Huabing Li, et al. An effective strategy for manufacturing ultra-high purity AISI 316L stainless steel by vacuum C deoxidization pretreatment plus Mg–Ca composite treatment. Journal of Materials Research and Technology, 2024, 30: 8959. https://doi.org/10.1016/j.jmrt.2024.05.267
    [2]Ping Shen, Hao Zhang, Kang Xu, et al. Effect of Mg-treatment on transformation of oxide inclusions in X80 pipeline steel. Journal of Iron and Steel Research International, 2024. https://doi.org/10.1007/s42243-024-01208-3
    [3]Qian Long, Jie Zeng, Xu Gao, et al. Effect of Al on the Cleanliness of the x% Al–7CrSiMnMoV Steel Produced by Scrap Steel. steel research international, 2024, 95(5) https://doi.org/10.1002/srin.202300795
    [4]Heng Ma, Zhong-xue Wang, Yue Liu, et al. pH-dependent corrosion initiation behavior induced by inclusions of low alloy steel in simulated marine environments. Journal of Iron and Steel Research International, 2023, 30(10): 2067. https://doi.org/10.1007/s42243-022-00878-1
    [5]A. D. Khoroshilov, S. A. Somov, V. D. Katolikov, et al. Using calcium-containing injection wire filled with electrolytic calcium in steel ladle treatment. Izvestiya. Ferrous Metallurgy, 2023, 66(3): 337. https://doi.org/10.17073/0368-0797-2023-3-337-343
    [6]Minghui Wu, Changyu Ren, Ying Ren, et al. In Situ Observation of the Agglomeration of MgO–Al2O3 Inclusions on the Surface of a Molten GCr15-Bearing Steel. Metallurgical and Materials Transactions B, 2023, 54(3): 1159. https://doi.org/10.1007/s11663-023-02751-2
    [7]Chen Xingrun, Qian Zhangxin, Pan Jixiang. Characteristics and formation mechanism of MgO-enriched inclusions in 2507 super duplex stainless steel during LF refinement. Metallurgical Research & Technology, 2022, 119(5): 516. https://doi.org/10.1051/metal/2022075
    [8]Yanbin Yin, Jiongming Zhang, Haitao Ma, et al. Large Eddy Simulation of Transient Flow, Particle Transport, and Entrapment in Slab Mold with Double‐Ruler Electromagnetic Braking. steel research international, 2021, 92(5) https://doi.org/10.1002/srin.202000582
    [9]Xue-feng Bai, Yan-hui Sun, Rui-mei Chen, et al. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(5): 573. https://doi.org/10.1007/s12613-019-1766-0
    [10]Xingrun Chen, Guoguang Cheng, Yuyang Hou, et al. Inclusions evolution during the LF refining process of 439 ultra-pure ferritic stainless steel. Metallurgical Research & Technology, 2019, 116(6): 619. https://doi.org/10.1051/metal/2019048
    [11]Sha Lyu, Xiaodong Ma, Zongze Huang, et al. Formation Mechanism of Al2O3-Containing Inclusions in Al-Deoxidized Spring Steel. Metallurgical and Materials Transactions B, 2019, 50(5): 2205. https://doi.org/10.1007/s11663-019-01644-7
    [12]Jian-long Guo, Li-hua Zhao, Yan-ping Bao, et al. Carbon and oxygen behavior in the RH degasser with carbon powder addition. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 681. https://doi.org/10.1007/s12613-019-1782-0
    [13]Yi-nan Shen, Yi Xing, Peng Jiang, et al. Corrosion resistance evaluation of highly dispersed MgO-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(8): 1038. https://doi.org/10.1007/s12613-019-1807-8
    [14]Lifeng Chen, Kun Liu, Peng Han, et al. Numerical Simulation and Experimental Investigation on Inclusion-Argon-Liquid Steel Phenomenon in RH Refining of High-Manganese and High-Aluminum Steel. Mathematical Problems in Engineering, 2019, 2019: 1. https://doi.org/10.1155/2019/1562417

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuView Count, PDF Downloads StatisticsView CountPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-01010203040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionView Count: 94.1 %View Count: 94.1 %PDF: 5.9 %PDF: 5.9 %View CountPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %Austria: 1.7 %Austria: 1.7 %China: 52.6 %China: 52.6 %Germany: 1.3 %Germany: 1.3 %India: 2.6 %India: 2.6 %Iran (ISLAMIC Republic Of): 1.9 %Iran (ISLAMIC Republic Of): 1.9 %Italy: 0.6 %Italy: 0.6 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Poland: 0.4 %Poland: 0.4 %Reserved: 1.1 %Reserved: 1.1 %Spain: 0.4 %Spain: 0.4 %Sweden: 0.9 %Sweden: 0.9 %United States: 33.5 %United States: 33.5 %其他AustriaChinaGermanyIndiaIran (ISLAMIC Republic Of)ItalyKorea Republic ofPolandReservedSpainSwedenUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(570) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return