Cite this article as: |
Sheng-chao Duan, Chuang Li, Han-jie Guo, Jing Guo, Shao-wei Han, and Wen-sheng Yang, Investigation of the kinetic mechanism of the demanganization reaction between carbon-saturated liquid iron and CaF2-CaO-SiO2-based slags, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp. 399-404. https://doi.org/10.1007/s12613-018-1584-9 |
Han-jie Guo E-mail: guohanjie@ustb.edu.cn
[1] |
M.Y. Mohassab-Ahmed and H.Y. Sohn, Effect of water vapor content in H2-H2O-CO-CO2 mixtures on the equilibrium distribution of manganese between CaO-MgOsat.-SiO2-Al2O3-FeO-P2O5 slag and molten iron, Steel Res. Int., 85(2014), No. 5, p. 875.
|
[2] |
H. El-faramawy, T. Mattar, M. Eissa, K. El-fawakhry, and A.M. Ahmed, Demanganisation of high manganese pig iron to produce high manganese slag, Ironmak. Steelmak., 31(2004), No. 1, p. 23.
|
[3] |
S.J. Kim, J. Takekawa, H. Shibata, S. Kitamura, K. Yamaguchi, and Y.B. Kang, Thermodynamic assessment of MnO and FeO activities in FeO-MnO-MgO-P2O5-SiO2(-CaO) molten slag, ISIJ Int., 53(2013), No. 8, p. 1325.
|
[4] |
F. Tsukihashi, A. Tagaya, and N. Sano, Effect of Na2O addition on the partition of vanadium, niobium, manganese and titanium between Cao-CaF2-SiO2 melts and carbon saturated iron, Trans. Iron Steel Inst. Jpn., 28(1988), No. 3, p. 164.
|
[5] |
N. Shinozaki, S. Sakamoto, K. Mori, and Y. Kawi, Manganese distribution between lime-or soda-based slags and liquid iron containing high carbon, Tetsu-to-Hagane, 73(1987), No. 9, p. 1109.
|
[6] |
S.C. Duan, C. Li, X.L. Guo, H.J. Guo, J. Guo, and W.S. Yang, A thermodynamic model for calculating manganese distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 ironmaking slags and carbon saturated hot metal based on the IMCT, Ironmaking Steelmaking, 2017. https://doi.org/10.1080/03019233.2017.1318547.
|
[7] |
N. Shinozaki, K. Mori, and Y. Kawai, Rate of transfer of manganese from MnO-(CaO + FetO + MgO)-SiO2 slag to liquid iron, Tetsu-to-Hagane, 68(1982), No. 1, p. 72.
|
[8] |
N. Shinozaki, K. Mori, and Y. Kawai, Rate of oxidation of manganese in liquid iron by FetO (+MnO)-CaO (+MgO)-SiO2 slag, Tetsu-to-Hagane, 67(1981), No. 1, p. 70.
|
[9] |
E. Shibata, H. Sun, and K. Mori, Kinetics of simultaneous reactions between liquid iron-carbon alloys and slags containing MnO, Metall. Mater. Trans. B, 30(1999), No. 2, p. 279.
|
[10] |
Y. Kawai, N. Shinozaki, and K. Mori, Rate of transfer of manganese across metal-slag interface and interfacial phenomena, Can. Metall. Quart., 21(1982), No. 4, p. 385.
|
[11] |
T. Takaoka, I. Sumi, Y. Kikuchi, and Y. Kawai, Manganese reaction rate in combined blowing converter with less slag, ISIJ Int., 33(1993), No. 1, p. 98.
|
[12] |
H. Xie and F. Oeters, Kinetics of mass transfer of manganese and silicon between liquid iron and slags, Steel Res., 66(1995), No. 12, p. 501.
|
[13] |
M. Meraikib, Manganese distribution between a slag and a bath of molten sponge iron and scrap, ISIJ Int., 33(1993), No. 3, p. 352.
|
[14] |
J.W. Robison and R.D. Pehlke, Kinetics of chromium oxide reduction from a basic steelmaking slag by silicon dissolved in liquid iron, Metall. Trans., 5(1974), No. 5, p. 1041.
|
[15] |
H.J. Guo, Metallurgical Physical Chemistry, Metallurgical Industry Press, Beijing, 2006, p. 107.
|
[16] |
J.F. Elliott (Editor), The Physical Chemistry of Steelmaking, MIT Press and John Wiley & Sons, Inc., New York, 1958, p. 237.
|
[17] |
C.Z. Wang, Research Methods in Metallurgical Physical Chemistry, Metallurgical industry press, Beijing, 2013, p. 492.
|
[18] |
B.J. Monaghan, R.J. Pomfret, and K.S. Coley, The kinetics of dephosphorization of carbon-saturated iron using an oxidizing slag, Metall. Mater. Trans. B, 29(1998), No. 1, p. 111.
|
[19] |
J.G. Kang, J.H. Shin, Y. Chung, and J.H. Park, Effect of slag chemistry on the desulfurization kinetics in secondary refining processes, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2123.
|
[20] |
V.D. Eisenhüttenleute and M. Allibert, Slag Atlas. 2nd Ed., Woodhead Publishing Limited, Cambridge, U. K., 1995, p. 61.
|
[21] |
S. Seetharaman, K. Mukai, and D. Sichen, Viscosities of slags-an overview, Steel Res. Int., 76(2005), No. 4, p. 267.
|
[1] | Jie Wang, Wei Wang, Xuheng Chen, Junfang Bao, Qiuyue Hao, Heng Zheng, Runsheng Xu. Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis[J]. International Journal of Minerals, Metallurgy and Materials, 2025, 32(1): 58-69. doi: 10.1007/s12613-024-2873-0 |
[2] | Lei-zhen Peng, Zhou-hua Jiang, Xin Geng. Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 611-619. doi: 10.1007/s12613-020-1976-5 |
[3] | Chun-ming Ai, Ping-ping Sun, Ai-xiang Wu, Xun Chen, Chao Liu. Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(3): 274-281. doi: 10.1007/s12613-019-1735-7 |
[4] | Jin-yang Zhu, Li-ning Xu, Min-xu Lu, Wei Chang. Cathodic reaction mechanisms in CO2 corrosion of low-Cr steels[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1405-1414. doi: 10.1007/s12613-019-1861-2 |
[5] | Reza Beygi, Majid Zarezadeh Mehrizi, Hossein Mostaan, Mahdi Rafiei, Ahmadreza Abbasian. Synthesis of a NiTi2-AlNi-Al2O3 nanocomposite by mechanical alloying and heat treatment of Al-TiO2-NiO[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(3): 345-349. doi: 10.1007/s12613-019-1743-7 |
[6] | Hendrik Setiawan, Himawan Tri Bayu Murti Petrus, Indra Perdana. Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(1): 98-107. doi: 10.1007/s12613-019-1713-0 |
[7] | Dong-wen Xiang, Feng-man Shen, Jia-long Yang, Xin Jiang, Hai-yan Zheng, Qiang-jian Gao, Jia-xin Li. Combustion characteristics of unburned pulverized coal and its reaction kinetics with CO2[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(7): 811-821. doi: 10.1007/s12613-019-1791-z |
[8] | Tao Xu, Xiao-jun Ning, Guang-wei Wang, Wang Liang, Jian-liang Zhang, Yan-jiang Li, Hai-yang Wang, Chun-he Jiang. Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(12): 1412-1422. doi: 10.1007/s12613-018-1695-3 |
[9] | Shang-hao Tong, Yong Li, Ming-wei Yan, Peng Jiang, Jia-jia Ma, Dan-dan Yue. In situ reaction mechanism of MgAlON in Al-Al2O3-MgO composites at 1700℃ under flowing N2[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(9): 1061-1066. doi: 10.1007/s12613-017-1496-0 |
[10] | Yi-ran Liu, Jian-liang Zhang, Zheng-jian Liu, Xiang-dong Xing. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand[J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(7): 760-768. doi: 10.1007/s12613-016-1290-4 |
[11] | Ru-fei Wei, Da-qiang Cang, Ling-ling Zhang, Yuan-yuan Bai. Staged reaction kinetics and characteristics of iron oxide direct reduction by carbon[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(10): 1025-1032. doi: 10.1007/s12613-015-1164-1 |
[12] | Jue Tang, Man-sheng Chu, Feng Li, Ya-ting Tang, Zheng-gen Liu, Xiang-xin Xue. Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 562-572. doi: 10.1007/s12613-015-1108-9 |
[13] | Qiang-jian Gao, Feng-man Shen, Xin Jiang, Guo Wei, Hai-yan Zheng. Gas-solid reduction kinetic model of MgO-fluxed pellets[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(1): 12-17. doi: 10.1007/s12613-014-0859-z |
[14] | Teng Zhang, Xiao-jun Hu, Kuo-Chih Chou. Kinetic study on the reaction between CO2-CO and wustite using the isotope exchange method[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(2): 125-130. doi: 10.1007/s12613-013-0703-x |
[15] | Ali Rasooli, Mehdi Divandari, Hamid Reza Shahverdi, Mohammad Ali Boutorabi. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(2): 165-172. doi: 10.1007/s12613-012-0533-2 |
[16] | Jia-yuan Huang, Bi-tao Yu, Fu-shen Li, Wei-hua Qiu. Forecasting conductivities of LiBOB-EC/DEC electrolytes by the mass triangle model[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 463-467. doi: 10.1016/S1674-4799(09)60081-9 |
[17] | Jianhua Liu, Jiayun Zhang. Assessment of the apparent activation energies for gas/solid reactions-carbonate decomposition[J]. International Journal of Minerals, Metallurgy and Materials, 2003, 10(2): 25-29. |
[18] | Ying Qu. Mass transfer coefficients in metallurgical reactors[J]. International Journal of Minerals, Metallurgy and Materials, 2003, 10(2): 1-9. |
[19] | Chunbao Xu, Shengli Wu, Daqiang Cang. Numerical Modeling of NO Formation during Packed-bed Combustion of Coke Granules[J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(4): 261-268. |
[20] | Jian Zhang. Calculating Model of Mass Action Concentrations for Fe-Cr-P Melts and Optimization of Thermodynamic Parameters[J]. International Journal of Minerals, Metallurgy and Materials, 1999, 6(1): 11-14. |
[1] | Wen-zhi Xia, Ting Wu, Jie Lei, et al. Directional Sulfur Removal from Ladle Furnace Slag by Electric Field Strengthening Treatment. steel research international, 2023. https://doi.org/10.1002/srin.202300182 | |
[2] | Noureddine Sitouah, Abdelhamid Cherfi, Mehena Oualit, et al. Production of Lamellar Cast Iron EN-GJL-150 From Local Manganese-Rich Pig Iron by Modification of the Melting Process. Advances in Materials Science, 2022, 22(4): 69. https://doi.org/10.2478/adms-2022-0020 | |
[3] | Gao-Jun Zhang, Shao-Yi Wu, Chen-Hao Liang, et al. DFT calculations of the local structures and the EPR parameters for Rh2+ doped AO (A = Mg, Ca) crystals. Chemical Physics, 2020, 534: 110734. https://doi.org/10.1016/j.chemphys.2020.110734 | |
[4] | Sheng-Chao Duan, Xiao Shi, Fei Wang, et al. A Review of Methodology Development for Controlling Loss of Alloying Elements During the Electroslag Remelting Process. Metallurgical and Materials Transactions B, 2019, 50(6): 3055. https://doi.org/10.1007/s11663-019-01665-2 | |
[5] | Sheng-Chao Duan, Xiao Shi, Fei Wang, et al. Investigation of desulfurization of Inconel 718 superalloys by ESR type slags with different TiO2 content. Journal of Materials Research and Technology, 2019, 8(3): 2508. https://doi.org/10.1016/j.jmrt.2019.01.027 |